On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere



[1] Microbaroms are permanent infrasonic waves produced by interacting open ocean swells near low-pressure systems. Continuous infrasound monitoring over 5 years show that microbaroms are globally observed at several middle- and high-latitude infrasound stations that are part of the International Monitoring System (IMS). The arrival azimuths and amplitude of the signals exhibit clear seasonal trends driven primarily by the seasonal reversal of the zonal stratospheric wind. A scaling relation between the signal amplitude and the strength of the upper wind suggests that most of the microbarom energy propagates in the ground to stratosphere waveguide. We show that continuous microbarom measurements can help to evaluate global infrasound detection capabilities, providing new insights on quantitative relationships between infrasonic observables and atmospheric specifications.