SEARCH

SEARCH BY CITATION

References

  • Arora, V. K. (2002), Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models, Rev. Geophys., 40(2), 1006, doi:10.1029/2001RG000103.
  • Arora, V. K., and G. K. Boer (2005), A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, Global Change Biol., 11, 3959, doi:10.1111/j.1365-2486.2004.00890.x.
  • Asner, G. P., J. M. O. Scurlock, and J. A. Hicke (2003), Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies, Global Ecol. Biogeogr., 12, 191205.
  • Betts, R. A., P. M. Cox, S. E. Lee, and F. I. Woodward (1997), Contrasting physiological and structural vegetation feedbacks in climate change simulations, Nature, 387, 796799.
  • Bondeau, A., D. W. Kicklighter, J. Kaduk, and the Participants of the Postdam NPP Model Intercomparison (1999), Comparing global models of terrestrial net primary productivity (NPP): Importance of vegetation structure on seasonal NPP estimates, Global Change Biol., 5, 3545.
  • Botta, A., N. Viovy, P. Ciais, P. Friedlinstein, and P. Monfray (2000), A global prognostic scheme of leaf onset using satellite data, Global Change Biol., 6, 709725.
  • Bounoua, L., et al. (1999), Interactions between vegetation and climate: Radiative and physiological effects of doubled atmospheric CO2, J. Clim., 12, 309324.
  • Buermann, W., Y. Wang, J. Dong, L. Zhou, X. Zeng, R. E. Dickinson, C. S. Potter, and R. B. Myneni (2002), Analysis of a multiyear global vegetation leaf area index data set, J. Geophys. Res., 107(D22), 4646, doi:10.1029/2001JD000975.
  • Calvet, J.-C. (2000), Investigating soil and atmospheric plant water stress using physiological and micrometeorological data, Agric. For. Meteorol., 103, 229247.
  • Calvet, J.-C., and J.-F. Soussana (2001), Modelling CO2-enrichment effects using an interactive vegetation SVAT scheme, Agric. For. Meteorol., 108, 129152.
  • Calvet, J.-C., J. Noilhan, J.-L. Roujean, P. Bessemoulin, M. Cabelguenne, A. Olioso, and J.-P. Wigneron (1998), An interactive vegetation SVAT model tested against date from six contrasting sites, Agric. For. Meteorol., 92, 7395.
  • Calvet, J.-C., V. Rivalland, C. Picon-Cochard, and J.-M. Guehl (2004), Modelling forest transpiration and CO2 fluxes - Response to soil moisture stress, Agric. For. Meteorol., 124, 143156.
  • Ciais, P., P. P. Tans, and M. Trolier (1995), A large northern-hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2, Science, 209, 10981102.
  • Cox, P. M., C. Huntingford, and R. J. Harding (1998), A canopy conductance and photosynthesis model for use in a GCM land surface scheme, J. Hydrol., 212–213, 7994.
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell (2000), Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184187.
  • Dan, L., J. Ji, and Y. Li (2005), Climatic and biological simulations in a two-way coupled atmosphere-biosphere model, Global Planet. Change, 47, 153169.
  • Decharme, B., and H. Douville (2005), Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations, Clim. Dyn., doi:10.1007/s00382-006-0160-6, in press.
  • Déqué, M., C. Dreveton, A. Braun, and D. Cariolle (1994), The ARPEGE/IFS atmosphere model, A contribution to the French community climate modelling, Clim. Dyn., 10, 249266.
  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich (1998), Interactive canopies for a climate model, J. Clim., 11, 28232836.
  • Dirmeyer, P. A., A. J. Dolman, and N. Sato (1999), The Global Soil Wetness Project: A pilot project for global land surface modeling and validation, Bull. Am. Meteorol. Soc., 80, 851878.
  • Dirmeyer, P. A., X. Gao, and T. Oki (2002), The Second Global Soil Wetness Project GSWP2: Science and implementation plan, IGPO Publ. 37, Int. GEWEX Proj. Off., Washington, D. C.
  • Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki (2005), The Second Global Soil Wetness Project GSWP2: Multi-model analysis and implications for our perception of the land surface, COLA Tech. Rep. 185, Cent. for Ocean-Land-Atmos. Stud., Calverton, Md.
  • Douville, H., S. Planton, J.-F. Royer, D. Stephenson, S. Tyteca, L. Kergoat, S. Lafont, and R. Betts (2000), Importance of vegetation feedbacks in doubled-CO2 climate experiments, J. Geophys. Res., 105, 14,84114,861.
  • Foley, J. A., I. C. Prentice, N. Ramunkutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine (1996), An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cycles, 10, 603628.
  • Friedl, M. A., et al. (2002), Global land cover mapping from MODIS: Algorithms and early results, Remote Sens. Environ., 83, 287302.
  • Gibelin, A.-L., and M. Déqué (2003), Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model, Clim. Dyn., 20, 327339.
  • Gong, D. Y., and P. J. Shi (2003), Northern hemispheric NDVI variations associated with large-scale climate indeices in spring, Int. J. Remote Sens., 12, 25592566.
  • Hall, F. G., G. Collatz, Los, S. O., E. Brown de Colstoun, and D. Landis (Eds.) (2005), ISLSCP Initiative II, NASA, DVD/CD-ROM.
  • Houghton, J., Y. Ding, D. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell, and C. Johnson (Eds.) (2001), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assesment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York.
  • Jacobs, C. M. J., B. J. J. M. van den Hurk, and H. A. R. de Bruin (1996), Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions, Agric. For. Meteorol., 80, 111134.
  • Jarvis, P. G. (1976), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. London, Ser. B, 273, 593610.
  • Jolly, W. M., R. Nemani, and S. W. Running (2005), A generalized, bioclimatic index to predict foliar phenology in response to climate, Global Change Biol., 11, 619632, doi:10.1111/j.1365-2486.2005.00930.x.
  • Jonckheere, I., S. Fleck, K. Nackaerts, B. Muys, P. Coppin, M. Weiss, and F. Baret (2004), Review of methods for in situ leaf area index determination Part Theories, I., sensors and hemispherical photography, Agric. For. Meteorol., 121, 1935, doi:10.1016/j.agrformet.2003.08.027.
  • Justice, C. O., G. Townshend, E. F. Vermotte, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy, and J. T. Morisette (2002), An overview of MODIS Land data processing and product status, Remote Sens. Environ., 83, 315.
  • Keeling, R., S. Piper, and M. Heimann (1996), Global and hemispheric carbon dioxide sinks deduced from changes in atmospheric O2 concentration, Nature, 381, 218221.
  • Kergoat, L., S. Lafont, H. Douville, B. Berthelot, G. Dedieu, S. Planton, and J.-F. Royer (2002), Impact of doubled CO2 on global scale leaf area index and evapotranspiration: Conflicting stomatal and LAI responses, J. Geophys. Res., 107(D24), 4808, doi:10.1029/2001JD001245.
  • Knyazikhin, Y., J. V. Martonchik, R. B. Myneni, D. J. Diner, and S. W. Running (1998), Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data, J. Geophys. Res., 103, 32,25732,276.
  • Körner, C. (2000), Biosphere responses to CO2 enrichment, Ecol. Appl., 10, 15901619.
  • Körner, C. (2003), Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems, Philos. Trans. R. Soc. London, Ser. A, 361, 20232041.
  • Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. Prentice (2005), A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.
  • Los, S. O., et al. (2000), A global 9–year biophysical land surface dataset from NOAA AVHRR data, J. Hydrometeorol., 1, 183199.
  • Los, S. O., P. R. J. North, W. M. F. Grey, and M. J. Barnsley (2005), A method to convert AVHRR Normalized Difference Index time series to a standard viewing and illumination geometry, Remote Sens. Environ., 99, 400411, doi:10.1016/j.rse.2005.08.017.
  • Masson, V., J.-L. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze (2003), A global database of land surface parameters at 1–km resolution in meteorological and climate models, J. Clim., 16, 12611282.
  • Moulin, S., L. Kergoat, N. Viovy, and G. Dedieu (1997), Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements, J. Clim., 10, 11541170.
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani (1997), Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386, 698702.
  • Myneni, R. B., et al. (2002), Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ., 83, 214231.
  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running (2003), Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300, 15601563.
  • Noilhan, J., and J.-F. Mahfouf (1996), The ISBA land surface parameterisation scheme, Global Planet. Change, 13, 145159.
  • Noilhan, J., and S. Planton (1989), A simple parameterization of land surface processes for meteorological models, Mon. Weather Rev., 117, 536549.
  • Pielke, R. A., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning (1998), Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate, Global Change Biol., 4, 461475.
  • Pitman, A. J. (2003), The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Climatol., 23, 479510.
  • Poorter, H. (1993), Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration, Vegetatio, 104/105, 7797.
  • Prentice, I., et al. (2001), The carbon cycle and atmospheric CO2, in Climate Change 2001: The Scientific Basis: Contribution of WGI to the Third Assessment Report of the IPCC, pp. 183237, Cambridge Univ. Press, New York.
  • Reich, P. B., and J. Oleksyn (2004), Global patterns of plant leaf N and P in relation to temperature and latitude, Proc. Natl. Acad. Sci. U. S. A., 101, 11,00111,006.
  • Reich, P. B., D. S. Ellsworth, M. B. Walters, J. M. Vose, C. Gresham, J. C. Volin, and W. D. Bowman (1999), Generality of leaf trait relationships: A test across six biomes, Ecology, 80, 19551969.
  • Richard, Y., and I. Poccard (1998), A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa, Int. J. Remote Sens., 15, 29072920.
  • Rivalland, V. (2003), Amélioration et validation du modèle de fonctionnement de la végétation ISBA-A-gs: Stress hydrique et flux de CO2, Ph.D. thesis, Univ. Paul Sabatier, Toulouse.
  • Rivalland, V., J.-C. Calvet, P. Berbigier, Y. Brunet, and A. Granier (2005), Transpiration and CO2 fluxes of a pine forest: Modelling the undergrowth effect, Ann. Geophys., 23, 114.
  • Roujean, J.-L., and R. Lacaze (2002), Global mapping of vegetation parameters from POLDER multi-angular measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation, J. Geophys. Res., 107(D12), 4150, doi:10.1029/2001JD000751.
  • Schulze, E. D., F. M. Kelliher, C. Körner, J. Lloyd, and R. Leuning (1994), Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise, Annu. Rev. Ecol. Syst., 25, 629660.
  • Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua (1996a), A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation, J. Clim., 9, 676705.
  • Sellers, P. J., et al. (1996b), Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate, Science, 271, 14021406.
  • Sellers, P. J., et al. (1997), Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science, 275, 502509.
  • Tanaka, K., K. Yorozu, R. Hamabe, and S. Ikebuchi (2004), Validation of the GSWP2 baseline simulation, paper presented at 85th Annual Meeting - 19th Conference on Hydrology, Am. Meteorol. Soc., San Diego, Calif.
  • Voirin, S., J.-C. Calvet, F. Habets, and J. Noilhan (2001), Interactive vegetation modelling at a regional scale: Application to the Adour basin, Plant Cell Environ., 26, 479484.
  • Wang, Q., J. Tenhunen, N. Q. Dinh, M. Reichstein, D. Otieno, A. Granier, and K. Pilegarrd (2005), Evaluation of seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites, Remote Sens. Environ., 96, 475484.
  • White, M. A., P. E. Thornton, and S. W. Running (1997), A continental phenology model for monitoring vegetation responses to interannual climatic variability, Global Biogeochem. Cycles, 11, 217234.
  • Zeng, N., J. D. Neelin, K. M. Lau, and C. J. Tucker (1999), Enhancement of interdecadal climate variability in the Sahel by vegetation interaction, Science, 286, 15371540.
  • Zhao, M., and P. A. Dirmeyer (2003), Production and analysis of GSWP-2 near surface meteorology data sets, COLA Tech. Rep. 159, Cent. for Ocean-Land-Atmos. Stud., Calverton, Md.
  • Zhou, L., C. J. Tucker, R. K. Kaufmann, D. Slayback, N. V. Shabanov, and R. B. Myneni (2001), Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999, J. Geophys. Res., 106, 20,06920,083.
  • Zhou, L., R. K. Kaufmann, Y. Tian, R. B. Myneni, and C. J. Tucker (2003), Relation between interannual variations in satellite measures of northern forest greeness and climate between 1982 and 1999, J. Geophys. Res., 108(D1), 4004, doi:10.1029/2002JD002510.