SEARCH

SEARCH BY CITATION

References

  • Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle (1986), AFGL atmospheric constituent profiles (0–120 km), Tech. Rep. AFGL-TR-86-0110, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
  • Anderson, T. L., R. J. Charlson, S. E. Schwartz, R. Knutti, O. Boucher, H. Rodhe, and J. Heintzenberg (2003), Climate forcing by aerosols—A hazy picture, Science, 300, 11031104.
  • Barker, H. W., et al. (2003), Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds, J. Clim., 16, 26762699.
  • Boucher, O., and J. Haywood (2001), On summing the components of radiative forcing of climate change, Clim. Dyn., 18, 297302.
  • Boucher, O., et al. (1998), Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols, J. Geophys. Res., 103, 16,97916,998.
  • Cess, R. D., et al. (1993), Uncertainties in carbon-dioxide radiative forcing in atmospheric general-circulation models, Science, 262, 12521255.
  • Christidis, N., M. D. Hurley, S. Pinnock, K. P. Shine, and T. J. Wallington (1997), Radiative forcing of climate change by CFC-11 and possible CFC-replacements, J. Geophys. Res., 102, 19,59719,609.
  • Clough, A. A., and M. J. Iacono (1995), Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon-dioxide, ozone, methane, nitrous-oxide and the halocarbons, J. Geophys. Res., 100, 16,51916,535.
  • Clough, S. A., F. X. Kneizys, and R. W. Davies (1989), Line shape and the water vapor continuum, Atmos. Res., 23, 229241.
  • Clough, S. A., M. W. Shephard, E. Mlawer, J. S. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91, 233244.
  • Dudhia, A. (1997), RFM v3 software user's manual, Tech. Rep. ESA PO-MA-OXF-GS-0003, Atmos., Oceanic, and Planet. Phys., Clarendon Lab., Oxford, U. K.
  • Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Tech. Rep. NCAR/TN-367+STR, 147 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.
  • Ellingson, R. G., and Y. Fouquart (1991), The intercomparison of radiation codes in climate models—An overview, J. Geophys. Res., 96, 89258927.
  • Ellingson, R. G., S. J. Ellis, and S. B. Fels (1991), The intercomparison of radiation codes used in climate models—Long-wave results, J. Geophys. Res., 96, 89298953.
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair (1980), Stratospheric sensitivity to perturbations in ozone and carbon-dioxide—Radiative and dynamical response, J. Atmos. Sci., 37, 22652297.
  • Fels, S. B., J. T. Kiehl, A. A. Lacis, and M. D. Schwarzkopf (1991), Infrared cooling rate calculations in operational general circulation models: Comparison with benchmark computations, J. Geophys. Res., 96, 91059120.
  • Fouquart, Y., B. Bonnel, and V. Ramaswamy (1991), Intercomparing shortwave radiation codes for climate studies, J. Geophys. Res., 96, 89558968.
  • Goody, R. M., and Y. L. Yung, (1989) Atmospheric Radiation, 2nd ed., 519 pp., Oxford Univ. Press, New York.
  • Halthore, R. N., et al. (2005), Intercomparison of shortwave radiative transfer codes and measurements, J. Geophys. Res., 110, D11206, doi:10.1029/2004JD005293.
  • Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102, 68316864.
  • Intergovernmental Panel on Climate Change (IPCC) (1995), Climate Change, 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, edited by J. T. Houghton et al., 339 pp., Cambridge Univ. Press, New York.
  • Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., 944 pp., Cambridge Univ. Press, New York.
  • Kiehl, J. T., and K. E. Trenberth (1997), Earth's annual global mean energy budget, Bull. Am. Meteorol. Soc., 78, 197208.
  • Kratz, D. P., and F. G. Rose (1999), Accounting for molecular absorption within the spectral range of the CERES window channel, J. Quant. Spectrosc. Radiat. Transfer, 61, 8395.
  • Kratz, D. P., M. G. Mlynczak, C. J. Mertens, H. Brindley, L. L. Gordley, J. Martin-Torres, F. M. Miskolczi, and D. D. Turner (2005), An inter-comparison of far-infrared line-by-line radiative transfer models, J. Quant. Spectrosc. Radiat. Transfer, 90, 323341.
  • Labs, D., and H. Neckel (1970), Transformation of the absolute solar radiation data into the “International practical temperature scale of 1968”, Sol. Phys., 15, 7987.
  • Liou, K.-N., (1992), Radiation and Cloud Processes in the Atmosphere, 487 pp., Oxford Univ. Press, New York.
  • Manabe, S., and R. T. Wetherald (1975), The effects of doubling the CO2 concentration on the climate of a general circulation model, J. Atmos. Sci., 37, 315.
  • Myhre, G., and F. Stordal (1997), Role of spatial and temporal variations in the computation of radiative forcing and GWP, J. Geophys. Res., 102, 11,18111,200.
  • Nakicenovic, N., and R. Swart (Eds.) (2000), Special Report of the Intergovernmental Panel on Climate Change on Emissions Scenarios, 570 pp., Cambridge Univ. Press, New York.
  • Pawson, S., et al. (2000), The GCM-Reality Intercomparison Project for SPARC (GRIPS): Scientific issues and initial results, Bull. Am. Meteorol. Soc., 81, 781796.
  • Ramanathan, V. (1981), The role of ocean-atmosphere interactions in the CO2 climate problem, J. Atmos. Sci., 38, 918930.
  • Ramanathan, V., and R. E. Dickinson (1979), The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the Earth-troposphere system, J. Atmos. Sci., 36, 10841104.
  • Ramaswamy, V., and S. M. Freidenreich (1998), A high-spectral resolution study of the near-infrared solar flux disposition in clear and overcast atmospheres, J. Geophys. Res., 103, 23,25523,273.
  • Randall, D. A., (Ed.) (2000), General Circulation Model Development, Int. Geophys. Ser., vol. 70, 807 pp., Elsevier, New York.
  • Rothman, L. S., et al. (2003), The HITRAN molecular spectroscopic database: Edition of 2000 including updates of 2001, J. Quant. Spectrosc. Radiat. Transfer, 82, 542.
  • Schwarzkopf, M. D., and S. B. Fels (1985), Improvements to the algorithm for computing CO2 transmissivities and cooling rates, J. Geophys. Res., 90, 10,54110,550.
  • Shine, K. P., B. P. Briegleb, A. S. Grossman, D. Hauglustaine, H. Mao, V. Ramaswamy, M. D. Schwarzkopf, R. van Dorland, and W. C. Wang (1995), Radiative forcing due to changes in ozone: A comparison of different codes, in Atmospheric Ozone as a Climate Gas: General Circulation Model Simulations, NATO ASI Ser., Ser. I, vol. 32, edited by W. C. Wang, and I. S. A. Isaksen, pp. 375396, Springer, New York.
  • Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera (1988), A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 25022509.
  • Tipping, R. H., and Q. Ma (1995), Theory of the water-vapor continuum and validations, Atmos. Res., 36, 6994.
  • Tjemkes, S. A., et al. (2003), The ISSWG line-by-line inter-comparison experiment, J. Quant. Spectrosc. Radiat. Transfer, 77, 433453.
  • Trenberth, K. E., (Ed.) (1992), Climate System Modeling, 788 pp., Cambridge Univ. Press, New York.
  • Tukey, J. W. (1977), Box-and-whisker plots, in Exploratory Data Analysis, chap. 2C, pp. 3943, Addison-Wesley, Reading, Mass.
  • Voigt, S., J. Orphal, D. Bogumil, and J. P. Burrows (2001), The temperature dependence (203–293 K) of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy, J. Photochem. Photobiol. A, 143, 19.
  • Zhong, W. Y., J. D. Haigh, D. Belmiloud, R. Schermaul, and J. Tennyson (2001), The impact of new water vapour spectral line parameters on the calculation of atmospheric absorption, Q. J. R. Meteorol. Soc., 127, 16151626.