SEARCH

SEARCH BY CITATION

References

  • Allison, C. E., R. Francey, and P. Krummel (2003), δ13C in CO2 from sites in the CSIRO Atmospheric Research GASLAB air sampling network (April 2003 version), in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Andres, R. J., G. Marland, and S. Bischof (1996), Global and latitudinal estimates of 13C from fossil-fuel consumption and cement manufacture, Data Rep. db1013, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Berger, R., T. B. Jackson, R. Michael, and H. E. Suess (1987), Radiocarbon content of tropospheric CO2 at China Lake, California 1977-1983, Radiocarbon, 29, 1823.
  • Broecker, W. S., and T.-H. Peng (1994), Stratospheric contribution to the global bomb radiocarbon inventory: Model versus observations, Global Biogeochem. Cycles, 8, 377384.
  • Broecker, W. S., T.-H. Peng, and R. Engh (1980), Modelling the carbon system, Radiocarbon, 22, 565598.
  • Broecker, W. S., T.-H. Peng, G. Östlund, and M. Stuiver (1985), The distribution of bomb radiocarbon in the ocean, J. Geophys. Res., 90, 69536970.
  • Broecker, W. S., S. Sutherland, W. Smethie, T.-S. Peng, and G. Östlund (1995), Oceanic radiocarbon: Separation of the natural and bomb component, Global Biogeochem. Cycles, 9, 263288.
  • Chang, J. (1976), Uncertainties in the validation of parameterized transport in 1-D models of the stratosphere, in Proceedings of the Fourth Conference on the Climatic Impact Assessment Program, edited by T. M. Hard, and A. J. Broderick, pp. 368380, Dept. of Trans., Washington D.C.
  • Diehl, M. (2002), Real-time optimization for large scale nonlinear processes, in Fortschr.-Ber. VDI Reihe 8, Meß-, Steuerungs- und Regelungstechnik, vol. 920, VDI Verlag, Düsseldorf. (Available at http://www.ub.uni-heidelberg.de/archiv/1659/).
  • Duffy, P. B., and K. Caldeira (1995), Three-dimensional model calculation of ocean uptake of bomb 14C and implications for the global budget of 14C, Global Biogeochem. Cycles, 9, 373375.
  • Enting, I. (1982), Nuclear weapons data for use in carbon cycle modelling, Tech. Pap. 44, CSIRO Div. of Atmos. Res., Melbourne, Australia.
  • Enting, I., and G. I. Pearman (1982), Description of a one-dimensional global carbon cycle model, Tech. Pap. 42, CSIRO Div. of Atmos. Res., Melbourne, Australia.
  • Etheridge, D., L. Steele, R. Langenfelds, R. Francey, J.-M. Barnola, and V. Morgan (1998), Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Francey, R., and C. E. Allison (1998), In situ carbon 13 and oxygen 18 ratios of atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Francey, R. J., C. Allison, D. Etheridge, C. Trudinger, I. Enting, M. Leuenberger, R. Langenfelds, E. Michel, and L. Steele (1999), A 1000 year high precision record of δ13C in atmospheric CO2, Tellus, Ser. B, 51, 170193.
  • Friedli, H., H. Lötscher, H. Oeschger, U. Siegenthaler, and B. Stauffer (1986), Ice core record of 13C/12C ratio of atmospheric CO2 in the past two centuries, Nature, 324, 237238.
  • Glasstone, S., and P. J. Dolan (1977), The Effects of Nuclear Weapons, U.S. Dept. of Defense and the Energy Res. and Dev. Admin., Washington D. C. (Available at http://www.princeton.edu/∼globsec/publications/effects/effects.shtml).
  • GlobalView (2003), Cooperative atmospheric data integration project—Carbon dioxide, Tech. Rep., NOAA CMDL, Boulder, Colo. (Available at ftp.cmdl.noaa.gov, path: ccg/CO2/GLOBALVIEW).
  • Goudrian, J. (1992), Biosphere structure, carbon sequestering potential and the atmospheric 14C record, J. Exp. Botany, 43, 11111119.
  • Harnisch, J., R. Borchers, P. Fabian, and M. Maiss (1996), Tropospheric Trends for CF4 and C2F6 since 1982 from SF6 dated stratospheric air, Geophys. Res. Lett., 32, 10991102.
  • Heimann, M., and C. D. Keeling (1989), A three-dimensional model of atmospheric CO2 transport based on observed winds: 2. Model description and simulated tracer experiments, in Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., vol. 55, edited by P. D. H., pp. 237275, AGU, Washington, D. C.
  • Hesshaimer, V. (1997), Tracing the global carbon cycle with bomb radiocarbon, Ph.D. thesis, Univ. of Heidelberg, Heidelberg, Germany.
  • Hesshaimer, V., and I. Levin (2000), Revision of the stratospheric bomb 14CO2 inventory, J. Geophys. Res., 105, 11,64111,658.
  • Hesshaimer, V., M. Heimann, and I. Levin (1994), Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed, Nature, 370, 201203.
  • Houghton, R. A., and J. L. Hackler (2001), Carbon flux to the atmosphere from land-use changes: 1850 to 1990, Data Rep. ORNL NDP–050/R1, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Jain, A. K., H. S. Kheshgi, and D. J. Wuebbles (1997), Is there an imbalance in the global budget of bomb-produced radiocarbon? J. Geophys. Res., 102, 13271333.
  • Johnston, H. S. (1989), Evaluation of excess carbon 14 and strontium 90 data for suitability to test two-dimensional stratospheric models, J. Geophys. Res., 94, 18,48518,493.
  • Johnston, H. S., D. Kattenhorn, and G. Whitten (1976), Use of excess carbon 14 data to calibrate models of stratospheric ozone depletion and supersonic transports, J. Geophys. Res., 81, 368380.
  • Joos, F. (1994), Imbalance in the budget, Nature, 370, 181182.
  • Keeling, C. D., and T. P. Whorf (2004), Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen (1989), A three-dimensional model of atmospheric CO2 transport based on observed winds, 1. Analysis of observational data, in Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., vol. 55, edited by D. H. Peterson, pp. 165236, AGU, Washington, D. C.
  • Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T.-H. Peng (2004), A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.
  • Kjellström, E., J. Feichter, and G. Hoffmann (2000), Transport of SF6 and 14CO2 in the atmospheric general circulation model ECHAM4, Tellus, Ser. B, 52, 118.
  • Land, C., J. Feichter, and R. Sausen (2002), Impact of vertical resolution on the transport of passive tracers in the ECHAM4 model, Tellus, Ser. B, 54, 344360.
  • Lassey, K. R., M. R. Manning, and B. J. O'Brien (1990), An overview of oceanic radiocarbon: Its inventory and dynamics, CRC Rev. Aquatic Sci., 3, 117146.
  • Lassey, K. R., I. Enting, and C. M. Trudinger (1996), The earth's radiocarbon budget: A consistent model of the global carbon and radiocarbon cycles, Tellus, Ser. B, 48, 487501.
  • Levin, I., and V. Hesshaimer (2000), Radiocarbon—A unique tracer of global carbon cycle dynamics, Radiocarbon, 42, 6980.
  • Levin, I., and B. Kromer (2004), The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003), Radiocarbon, 46, 12611272.
  • Levin, I., B. Kromer, H. Schoch-Fischer, M. Bruns, M. Münnich, D. Berdau, J. C. Vogel, and K. O. Münnich (1985), 25 years of tropospheric 14C observations in Central Europe, Radiocarbon, 27, 119.
  • Levin, I., B. Kromer, D. Wagenbach, and K. O. Münnich (1987), Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica, Tellus, Ser. B, 39, 8995.
  • Levin, I., B. Kromer, and R. J. Francey (1999), Continuous measurements of 14C in atmospheric CO2 at Cape Grim 1995-1996, in Baseline Atmospheric Program Australia, 1996, edited by J. L. Grass et al., Bur. of Meteorol. and CSIRO Atmos. Res., Melbourne, Australia.
  • Lingenfelter, R. E. (1963), Production of carbon 14 by cosmic-ray neutrons, Rev. Geophys., 1, 3555.
  • Maiss, M., L. P. Steele, R. J. Francey, P. J. Fraser, R. L. Langenfelds, N. B. A. Trivett, and I. Levin (1996), Sulfur hexafluoride - a powerful new atmospheric tracer, Atmos. Environ., 30, 16211629.
  • Manning, M. R., D. C. Lowe, W. H. Melhuish, R. J. Sparks, G. Wallace, C. A. M. Brenninkmeijer, and R. C. McGill (1990), The use of radiocarbon measurements in atmospheric studies, Radiocarbon, 32, 3758.
  • Marland, G., T. A. Boden, and R. J. Andres (2003), Global, regional, and national CO2 emissions, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Mook, W. G. (2000), Environmental isotopes in the hydrological cycle: Principles and applications, Int. Atom. Energy Agency (IAEA), Vienna, Austria. (Available at http://www.iaea.or.at/programmes/ripc/ih/volumes/volumes.htm).
  • Mook, W. G., M. Koopmans, A. F. Carter, and C. D. Keeling (1983), Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide: 1. Results from land stations, J. Geophys. Res., 88, 10,91510,933.
  • Naegler, T. (2005), Simulating bomb radiocarbon: Consequences for the global carbon cycle, Ph.D. thesis, Univ. of Heidelberg, Heidelberg, Germany.
  • Naegler, T., P. Ciais, K. Rodgers, and I. Levin (2006), Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans, Geophys. Res. Lett., doi:10.1029/2005GL025408, in press.
  • Nakamura, T., T. Nakazawa, N. Nakai, H. Kitagawa, H. Honda, T. Itoh, T. Machida, and E. Matsumoto (1992), Measurement of 14C concentration of stratospheric CO2 by accelerator mass spectronomy, Radiocarbon, 34, 745752.
  • Neftel, A., H. Friedli, E. Moor, H. Lötscher, H. Oeschger, U. Siegenthaler, and B. Stauffer (1994), Historical CO2 record from the Siple Station ice core, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Nydal, R., and K. Lövseth (1996), Carbon-14 measurements in atmospheric CO2 from northern and southern hemisphere sites, 1962-1993, ORNL/CDIAC-93, NDP-057, Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Nydal, R., K. Lövseth, and F. A. Skogseth (1980), Transfer of bomb 14C to the ocean surface, Radiocarbon, 22, 626635.
  • Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann (1975), A box diffusion model to study the carbon dioxide exchange in nature, Tellus, 27, 168192.
  • Olson, R. J., M. O. Scurlock, S. D. Prince, D. L. Zheng, and K. R. Johnson (2001), NPP multi-biome: NPP and driver data for ecosystem model, data intercomparison, Oak Ridge Natl. Lab. Dist. Active Arch. Cent., Oak Ridge, Tenn. (Available at http://daac.ornl.gov).
  • Patra, P. K., S. Lal, B. H. Subbaraya, C. H. Jackman, and P. Rajaratnam (1997), Observed vertical profile of sulphur hexafluoride (SF6) and its atmospheric applications, J. Geophys. Res., 102, 88558859.
  • Peacock, S. (2004), Debate over the ocean bomb radiocarbon sink: Closing the gap, Global Biogeochem. Cycles, 18, GB2022, doi:10.1029/2003GB002211.
  • Post, W. M.III (1993), Organic carbon in soil and the global carbon cycle, in The Global Carbon Cycle, NATO ASI Ser., vol. 115, edited by M. Heimann, pp. 277302, Springer, New York.
  • Prentice, I. C., et al. (2001), The carbon cycle and atmospheric CO2, in Climate Change: The Scientific Basis, edited by J. T. Houghton et al., pp. 183237, Cambridge Univ. Press, New York.
  • Rath, H. (1988), Simulation der globalen 85Kr- und 14CO2-Verteilung mit Hilfe eines zeitabhängigen, zweidimensionalen Modells der Atmosphäre, Ph.D. thesis, Univ. Heidelberg, Germany.
  • Rubin, S., and R. M. Key (2002), Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method, Global Biogeochem. Cycles, 16(4), 1105, doi:10.1029/2001GB001432.
  • Strunk, M., A. Engel, U. Schmidt, C. M. Volk, T. Wetter, I. Levin, and H. Glatzel-Mattheier (2000), CO2 and SF6 as stratospheric age tracers: Consistency of the effect of mesospheric SF6-loss, Geophys. Res. Lett., 27, 341344.
  • Stuiver, M., P. J. Reimer, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. McCormac, J. van der Plicht, and M. Spurk (1998a), INTCAL98 Radiocarbon Age Calibration, 24,000-0 cal BP, Radiocarbon, 40, 10411084.
  • Stuiver, M., P. J. Reimer, and T. F. Braziunas (1998b), High-precision radiocarbon age calibration for terrestrial and marine samples, Radiocarbon, 40, 11271151.
  • Sweeney, C., E. Gloor, A. J. Jacobson, R. M. Key, G. McKinley, and J. Sarmiento (2004), Estimating air-sea gas exchange using bomb 14C: revisited, paper presented at Ocean Sci. Meet. poster, AGU, Portland, Oreg.
  • Tans, P. (1981), A compilation of bomb 14C data for use in global carbon cycle model calculations, in SCOPE 16, Carbon Cycle Modelling, edited by B. Bolin, pp. 131137, John Wiley, Hoboken, N. J.
  • Telegadas, K. (1971), The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969, HASL Rep. 243, Health and Safety Lab., U.S. Atmos. Energy Comm., New York.
  • Telegadas, K., and R. J. List (1969), Are particulate radioactive tracers indicative of stratospheric motions? J. Geophys. Res., 74, 13391350.
  • U.N. Science Committee on the Effects of Atomic Radiation (UNSCEAR) (1993), Sources and effects of ionizing radiation, in UNSCEAR 1993 Report to the General Assembly, Tech. Pap., Vienna. (Available at http://www.unscear.org/).
  • UNSCEAR (2000), Sources and effects of ionizing radiation, in UNSCEAR 2000 Report to the General Assembly, Tech. Pap., U.N. Sci. Comm. on the Effects of Atom. Radiation, Vienna. (Available at http://www.unscear.org/).
  • Wagenbach, D. (1996), Coastal Antarctica: Atmospheric chemical composition and atmospheric transport, in Chemical Exchange Between the Atmosphere and Polar Snow, NATO ASI Workshop, edited by E. Wolf, and R. Bales, pp. 173199, Springer, New York.
  • Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 73737382.
  • Yang, X., R. North, and C. Romney (2000), CMR nuclear explosion database (revision 3), CMR Tech. Rep. 00/16, Cent. for Monitor. Res., U. S. Army Space and Missile Defense Command, Arlington, Va.