SEARCH

SEARCH BY CITATION

References

  • Aptowicz, K. B. (2005), Angularly-resolved elastic light scattering of micro-particles, Ph.D. thesis, 28 pp., Yale Univ., New Haven, Conn.
  • Ashkin, A., and J. M. Dziedzic (1980), Observation of light scattering from nonspherical particles using optical levitation, Appl. Opt., 19(5), 660668.
  • Barber, P. W., and S. C. Hill (1990), Light Scattering by Particles: Computational Methods, World Sci., Hackensack, N. J.
  • Bartholdi, M., G. C. Salzman, R. D. Hiebert, and M. Kerker (1980), Differential light scattering photometer for rapid analysis of single particles in flow, Appl. Opt., 19(10), 15731581.
  • Bauer, H., A. Kasper-Giebl, M. Loflund, H. Giebl, R. Hitzenberger, F. Zibuschka, and H. Puxbaum (2002), The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols, Atmos. Res., 64, 109119.
  • Chang, R. K., Y.-L. Pan, R. G. Pinnick, and S. C. Hill (2005), Method and instrumentation for measuring fluorescence spectra of individual airborne particles sampled from ambient air, Patent 6,947,134 B2, U.S. Patent and Trademark Off., Washington, D. C., 20 Sep.
  • Charlson, R. J., and T. M. L. Wigley (1994), Sulfate aerosol and climate change, Sci. Am., 270(2), 2835.
  • Chen, L.-W. A., B. G. Doddridge, R. R. Dickerson, J. C. Chow, and R. C. Henry (2002), Origins of fine aerosol mass in the Baltimore-Washington corridor: Implications from observation, factor analysis, and ensemble air parcel back trajectories, Atmos. Environ., 36, 45414554.
  • Chylek, P., V. Ramaswamy, R. Cheng, and R. G. Pinnick (1981), Optical properties and mass concentration of carbonaceous smokes, Appl. Opt., 20(17), 29802985.
  • Cziczo, D. J., J. B. Nowak, J. H. Hu, and J. P. D. Abbatt (1997), Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: Observation of deliquescence and crystallization, J. Geophys. Res., 102(D15), 18,84318,850.
  • Dasch, J. M., and S. H. Cadle (1989), Atmospheric carbon particles in the Detroit urban area: Wintertime sources and sinks, Aerosol Sci. Technol., 10, 236248.
  • Decesari, S., M. C. Facchini, E. Matta, M. Mircea, S. Fuzzi, A. R. Chughtai, and D. M. Smith (2002), Water soluble organic compounds formed by oxidation of soot, Atmos. Environ., 36, 18271832.
  • Dick, W. D., P. J. Ziemann, P. F. Huang, and P. H. McMurry (1998), Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols, Measure. Sci. Technol., 9(2), 183196.
  • Draxler, R. R., and G. D. Rolph (2003), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model, NOAA Air Resour. Lab., Silver Spring, Md. (Available at http://www.arl.noaa.gov/ready/hysplit4.html).
  • Ebert, M., S. Weinbruch, A. Rausch, G. Gorzawski, G. Helas, P. Hoffmann, and H. Wex (2002), Complex refractive index of aerosols during LACE 98 as derived from the analysis of individual particles, J. Geophys. Res., 107(D21), 8121, doi:10.1029/2000JD000195.
  • Gelencsér, A., A. Hoffer, Z. Krivácsy, G. Kiss, A. Molnár, and E. Mészáros (2002), On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res., 107(D12), 4137, doi:10.1029/2001JD001299.
  • Gucker, F. T., J. Tuma, H. M. Lin, C. M. Huang, S. C. Ems, and T. R. Marshall (1973), Rapid measurement of light-scattering diagrams from single aerosol particles in an aerosol stream and determination of the latex particle size, Aerosol Sci., 4, 389404.
  • Hahn, D. W. (1998), Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles, Appl. Phys. Lett., 72, 29602962.
  • Hill, S. C., A. C. Hill, and P. W. Barber (1984), Light scattering by size shape distributions of soil particles, Appl. Opt., 23(7), 10251031.
  • Hirst, E., and P. H. Kaye (1996), Experimental and theoretical light scattering profiles from spherical and nonspherical particles, J. Geophys. Res., 101(D14), 19,23119,235.
  • Hirst, E., P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson (2001), Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud, Atmos. Environ., 35(1), 3347.
  • Huang, P.-F., B. J. Turpin, M. H. Pipho, D. B. Kittelson, and P. H. McMurry (1994), Effects of water condensation and evaporation on diesel chain-agglomerate morphology, J. Aerosol Sci., 25(3), 447459.
  • Jaenicke, R. (2005), Abundance of cellular material and proteins in the atmosphere, Science, 308, 73.
  • Kaye, P. H. (1998), Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles, Measure. Sci. Technol., 9, 141149.
  • Kaye, P. H., E. Hirst, J. M. Clark, and F. Micheli (1992), Airborne particle-shape and size classification from spatial light-scattering profiles, J. Aerosol Sci., 23(6), 597611.
  • Kiss, G., B. Varga, I. Galambos, and I. Ganszky (2002), Characterization of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res., 107(D21), 8339, doi:10.1029/2001JD000603.
  • Kopcewicz, B., C. Nagamoto, R. Parungo, J. Harris, J. Miller, H. Sievering, and J. Rosinski (1991), Morphological studies of sulfate and nitrate particles on the east coast of North America and over the North Atlantic Ocean, Atmos. Res., 26, 245271.
  • Krivacsy, Z., et al. (2000), Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis, Atmos. Environ., 34, 42734281.
  • Larson, T. V., N. C. Ahlquist, and R. E. Weiss (1982), Chemical speciation of sulfuric acid-ammonium sulfate particles using temperature and humidity controlled nephelometry, Atmos. Environ., 16, 15871590.
  • Lee, S.-H., D. M. Murphy, D. S. Thomson, and A. M. Middlebrook (2002), Chemical components of single particles measured with particle analysis by laser mass spectrometry (PALMS) during the Atlanta Supersite Project: Focus on organic/sulfate, lead, soot, and mineral particles, J. Geophys. Res., 107(D1), 4003, doi:10.1029/2000JD000011.
  • Lee, S.-H., D. M. Murphy, D. S. Thomson, and A. M. Middlebrook (2003), Nitrate and oxidized organic ions in single particle mass spectra during the 1999 Atlanta Supersite Project, J. Geophys. Res., 108(D7), 8417, doi:10.1029/2001JD001455.
  • Lim, H.-J., and B. J. Turpin (2002), Origins of primary and secondary organic aerosol in Atlanta; results of time-resolved measurements during the Atlanta supersite experiment, Environ. Sci. Technol., 36(21), 44894496.
  • Mamane, Y., J. L. Miller, and T. G. Dzubay (1986), Characterization of individual fly ash particles emitted from coal- and oil-fired power plants, Atmos. Environ., 20(11), 21252135.
  • Marshall, T. R., C. S. Parmenter, and M. Seaver (1976), Characterization of polymer latex aerosols by rapid measurement of 360 degree light-scattering patterns from individual particles, J. Colloid Interface Sci., 55(3), 624636.
  • Mukai, A., and Y. Ambe (1986), Characterization of humic acid-like brown substance in airborne particulate matter and tentative identification of its origin, Atmos. Environ., 20, 813819.
  • Murphy, D. M., A. M. Middlebrook, and M. Warshawsky (2003), Cluster analysis of data from the particle analysis by laser mass spectrometry (PALMS) instrument, Aerosol Sci. Technol., 37, 382391.
  • Novakov, T., and J. E. Penner (1993), Large contribution of organic aerosols to cloud condensation nuclei concentrations, Nature, 365, 823826.
  • Novakov, T., D. A. Hegg, and P. V. Hobbs (1997), Airborne measurements of carbonaceous aerosols on the east coast of the United States, J. Geophys. Res., 102(D25), 30,02330,030.
  • Odum, J. R., T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, and J. H. Seinfeld (1996), Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 25802585.
  • Pan, Y. L., S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger (1999), Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser, Opt. Lett., 24(2), 116118.
  • Pan, Y. L., K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole (2003), Characterizing and monitoring respiratory aerosols by light scattering, Opt. Lett., 28(8), 589591.
  • Pan, Y. L., V. Boutou, J. R. Bottiger, S. S. Zhang, J.-P. Wolf, and R. K. Chang (2004), A putt of air sorts bioaerosols for pathogen identification, Aerosol Sci. Technol., 38, 598602.
  • Pinnick, R. G., G. Fernandez, B. D. Hinds, C. W. Bruce, R. W. Schaefer, and J. D. Pendleton (1985), Dust generated by vehicular traffic on unpaved roadways: Sizes and infrared extinction characteristics, Aerosol Sci. Technol., 4, 99121.
  • Pinnick, R. G., S. G. Jennings, and G. Fernandez (1987), Volatility of aerosols in the southwestern United States, J. Atmos. Sci., 44(3), 562576.
  • Pinnick, R. G., S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno (1995), Fluorescnce particle counter for detecting airborne bacteria and other biological particles, Aerosol Sci. Technol., 23, 653664.
  • Pinnick, R. G., S. C. Hill, Y. L. Pan, and R. K. Chang (2004), Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: Measurement and classification of single particles containing organic carbon, Atmos. Environ., 38(11), 16571672.
  • Pósfai, M., A. Gelencsér, R. Simonics, K. Arató, J. Li, P. V. Hobbs, and P. R. Buseck (2004), Atmospheric tar balls: Particles from biomass and biofuel burning, J. Geophys. Res., 109, D06213, doi:10.1029/2003JD004169.
  • Prather, K. A., T. Nordmeyer, and K. Salt (1994), Real-time characterization of individual aerosol particles using time-of-flight mass-spectrometry, Anal. Chem., 66, 14031407.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), Numerical Recipes in Fortran 77: The Art of Scientific Computing, chap. 15, pp. 678683, Cambridge Univ. Press, New York.
  • Prospero, J. M., R. J. Charlson, V. Mohnen, R. Jaenicke, A. C. Delany, J. Moyers, W. Zoller, and K. Rahn (1983), The atmospheric aerosol system: An overview, Rev. Geophys., 21(7), 16071629.
  • Qian, G.-W., and Y. Ishizaka (1993), Electron microscope studies of methane sulfonic acid in individual aerosol particles, J. Geophys. Res., 98(C5), 84598470.
  • Rietmeijer, J. M., and J. Janeczek (1997), An analytical electron microscope study of airborne industrial particles in Sosnowiec, Poland, Atmos. Environ., 31(13), 19411951.
  • Rogge, W. F., M. A. Mazurek, L. M. Hildemann, and G. R. Cass (1993), Quantification of urban organic aerosols at a molecular level: Identification of abundance and seasonal variation, Atmos. Environ., Part A, 27, 13091330.
  • Sachweh, B. A., W. D. Dick, and P. H. McMurry (1995), Distinguishing between spherical and nonspherical particles by measuring the variability in azimuthal light-scattering, Aerosol Sci. Technol., 23(3), 373391.
  • Samuels, A. C., F. C. DeLucia, K. L. McNesby, and A. W. Miziolek (2003), Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: Initial studies of discrimination potential, Appl. Opt., 42(30), 62056209.
  • Saxena, P., and L. M. Hildemann (1996), Water-soluble organics in atmospheric particles: A critical review of the literature and application to thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57109.
  • Secker, D. R., P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen (2000), Light scattering from deformed droplets and droplets with inclusions, Appl. Opt., 39(27), 50235030.
  • Seinfeld, J. H., and S. N. Pandis (1998), Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley-Interscience, Hoboken, N. J.
  • Shaffer, B. T., and B. Lighthart (1997), Survey of culturable airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal, Microbial Ecol., 34, 167177.
  • Sheridan, P. J., R. C. Schnell, J. D. Kahl, J. F. Boatman, and D. M. Garvey (1993), Microanalysis of the aerosol collected over south-central New Mexico during the ALIVE field experiment, May–December 1989, Atmos. Environ., Part A, 27, 11691183.
  • Sullivan, R. C., and K. A. Prather (2005), Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation, Anal. Chem., 77, 38613886.
  • Tang, I. N. (1976), Phase transformation and growth of aerosol particles composed of mixed salts, J. Aerosol Sci., 7(5), 361371.
  • Tang, I. N., and R. R. Munkelwitz (1977), Aerosol growth studies—III. Ammonium bisulfate aerosols in a moist atmosphere, J. Aerosol Sci., 8(5), 321330.
  • Tang, I. N., R. R. Munkelwitz, and J. G. Davis (1977), Aerosol growth studies—II. Preparation and growth measurements of monodisperse salt aerosols, J. Aerosol Sci., 8(3), 149159.
  • Videen, G., W. Sun, Q. Fu, D. R. Secher, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley (2000), Light scattering from deformed droplets and droplets with inclusions. II Theoretical treatment, Appl. Opt., 39(27), 50315039.
  • Weiss, R. E., A. P. Waggoner, R. J. Charlson, and N. C. Ahlquist (1977), Sulfate aerosol: Its geographic extent in the midwestern and southern United States, Science, 195, 979981.
  • Wyatt, P. J., K. L. Schehrer, S. D. Phillips, C. Jackson, Y. J. Chang, R. G. Parker, D. T. Phillips, and J. R. Bottiger (1988), Aerosol-particle analyzer, Appl. Opt., 27(2), 217221.
  • Zappoli, S., et al. (1999), Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ., 33, 27332743.