SEARCH

SEARCH BY CITATION

References

  • Ando, Y., M. Hayakawa, A. V. Shvets, and A. P. Nickolaenko (2005), Finite difference analyses of Schumann resonance and reconstruction of lightning distribution, Radio Sci., 40, RS2002, doi:10.1029/2004RS003153.
  • Balser, M., and C. A. Wagner (1960), Observation of Earth-ionosphere cavity resonances, Nature, 188, 638641.
  • Balser, M., and C. A. Wagner (1962a), Diurnal power variations of the Earth-ionosphere cavity modes and their relationship to world-wide thunderstorm activity, J. Geophys. Res., 67, 619625.
  • Balser, M., and C. A. Wagner (1962b), On frequency variations of the Earth-ionosphere cavity modes, J. Geophys. Res., 67, 40814083.
  • Belyaev, G. G., A. Y. Schekotov, A. V. Shvets, and A. P. Nickolaenko (1999), Schumann resonances observed using Poynting vector spectra, J. Atmos. Sol. Terr. Phys., 61, 751763.
  • Chrissan, D. A., and A. C. Fraser-Smith (1996), Seasonal variations of globally measured ELF/VLF radio noise, Radio Sci., 31, 11411152.
  • Christian, H. J. (2003), The v1.0 gridded satellite lightning data by the NASA LIS/OTD Science Team, Global Hydrol. Resour. Cent., Huntsville, Ala. (Available at http://ghrc.msfc.nasa.gov.).
  • Christian, H. J., et al. (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347.
  • Fraser-Smith, A. C., P. R. McGill, A. Bernardi, R. A. Helliwell, and M. E. Ladd (1991), Global measurements of the low frequency radio noise, in Environmental and Space Electromagnetics, edited by H. Kikuchi, pp. 191200, Springer, New York.
  • Füllekrug, M., and A. C. Fraser-Smith (1997), Global lightning and climate variability inferred from ELF magnetic field observations, Geophys. Res. Lett., 24, 24112414.
  • Galejs, J. (1961), Terrestrial extremely low frequency noise spectrum in the presence of exponential ionospheric conductivity profiles, J. Geophys. Res., 66, 27892793.
  • Gendrin, R., and R. Stefant (1962), Effect de l'explosion thermonucléaire a trés hasut altitude de Julliet 1962 sur la résonance de la cavité terre-ionopshere, résultats expérimenteaux, C. R. Hebd. Seances Acad. Sci., 255, 22732275.
  • Heckman, S. J., E. Williams, and B. Boldi (1998), Total global lightning inferred from Schumann resonance measurements, J. Geophys. Res., 103, 31,77531,780.
  • Holzer, R. E. (1958), World thunderstorm activity an extremely low frequency spherics, in Recent Advances in Atmospheric Electricity, edited by L. G. Smith, pp. 559607, Elsevier, New York.
  • Jones, D. L. (1999), ELF sferics and lightning effects on the middle and upper atmosphere, Modern Radio Science 1999, edited by M. A. Stuchly, pp. 171189, Oxford Univ. Press, New York.
  • Lazebny, B. V., A. P. Nickolaenko, V. E. Paznukhov, L. M. Rabinowicz, and V. F. Shulga (1987), Evaluation of global lightning activity parameters from the records of the coherence measure (in Russian), Geomagn. Aeron., 27, 516518.
  • Melnikov, A., C. Price, G. Sátori, and M. Füllekrug (2004), Influence of the solar terminator passages on Schumann resonance parameters, J. Atmos. Sol. Terr. Phys., 66, 11871194.
  • Middleton, D. (1960), An Introduction to Statistical Communication Theory, vol. 1, McGraw-Hill, New York.
  • Nickolaenko, A. P. (1997), Modern aspects of Schumann resonance studies, J. Atmos Sol. Terr. Phys., 59, 805816.
  • Nickolaenko, A. P., and M. Hayakawa (2002), Resonances in the Earth-Ionosphere Cavity, 380 pp., Springer, New York.
  • Nickolaenko, A. P., and L. M. Rabinowicz (1995), Study of the annual changes of global lightning distribution and frequency variations of the first Schumann resonance mode, J. Atmos. Terr. Phys., 57, 13451348.
  • Nickolaenko, A. P., M. Hayakawa, and Y. Hobara (1996), Temporal variations of the global lightning activity deduced from the Schumann resonance data, J. Atmos. Terr. Phys., 58, 16991709.
  • Nickolaenko, A. P., G. Sátori, B. Zieger, L. M. Rabinowicz, and I. G. Kudintseva (1998), Parameters of global thunderstorm activity deduced from the long-term Schumann resonance records, J. Atmos. Sol. Terr. Phys., 60, 387399.
  • Nickolaenko, A. P., M. Hayakawa, and Y. Hobara (1999), Long-term periodical variations in the global lightning activity deduced from the Schumann resonance monitoring, J. Geophys. Res., 104, 27,58527,591.
  • Ogawa, T., and Y. Murakami (1973), Schumann resonance frequencies and the conductivity profiles in the atmosphere, Contrib. Geophys. Inst. Kyoto Univ., 13, 1320.
  • Ogawa, T., Y. Tanaka, T. Miura, and M. Yasuhara (1966), Observations of natural ELF electromagnetic noises by using the ball antennas, J. Geomagn. Geoelectr., 18, 443454.
  • Ogawa, T., Y. Tanaka, A. C. Fraser-Smith, and R. Gendrin (1967), Worldwide simultaneity of a Q-burst in the Schumann resonance frequency range, J. Geomagn. Geoelectr., 19, 377384.
  • Ogawa, T., Y. Tanaka, and M. Yasuhara (1968), Diurnal variations of resonance frequencies in the Earth-ionosphere cavity, Contrib. Geophys. Inst. Kyoto Univ., 8, 1520.
  • Pechony, O., and C. Price (2006), Schumann resonances: Interpretation of local diurnal intensity modulations, Radio Sci., doi:10.1029/2006RS003455, in press.
  • Polk, C. (1969), Relation of ELF noise and Schumann resonances to thunderstorm activity, in Planetary Electrodynamics, vol. 2, edited by S. C. Coronoti, and J. Hughes, pp. 5583, Gordon and Breach, New York.
  • Price, C., and A. Melnikov (2004), Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters, J. Atmos. Sol. Terr. Phys., 66, 11791185.
  • Raemer, H. R. (1961a), On the spectrum of terrestrial radio noise at ELF, J. Res. Natl. Bur. Stand., Sect. D, 65, 582593.
  • Raemer, H. R. (1961b), On extremely low frequency spectrum of the Earth-ionosphere cavity response to electrical storms, J. Geophys. Res., 66, 15801584.
  • Rycroft, M. J. (1965), Resonances of the Earth-ionosphere cavity observed at Cambridge, England, J. Res. Natl. Bur. Stand., Sect. D, 69, 10711081.
  • Sao, K., M. Yamashita, and S. Tanahashi (1971), Day to day variations of Schumann resonance frequency and occurrence of Pc1 in view of solar activity, J. Geomagn. Geoelectr., 23, 411415.
  • Sao, K., M. Yamashita, and S. Tanahashi (1973), Experimental investigations of Schumann resonance frequencies, J. Atmos. Terr. Phys., 35, 20472053.
  • Sátori, G. (1996), Monitoring Schumann resonances—II. Daily and seasonal frequency variations, J. Atmos. Terr. Phys., 58, 14831488.
  • Sátori, G., and B. Zieger (1996), Spectral characteristics of Schumann resonances observed in central Europe, J. Geophys. Res., 101, 29,66329,669.
  • Sátori, G., and B. Zieger (1999), El Niño related meridional oscillation of global lightning activity, Geophys. Res. Lett., 26, 13651368.
  • Sátori, G., E. R. Williams, B. Zieger, R. Boldi, S. Heckman, and K. Rothkin (1999), Comparison of long-term Schumann resonance records in Europe and North America, paper presented at 11th International Conference on Atmospheric Electricity, Global Hydrol. and Clim. Cent., Guntersville, Ala.
  • Schumann, W. O. (1952), Über die strahlunglosen eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionospharenhülle umgeben ist, Z. Naturforsch. A, 7, 66276628.
  • Sentman, D. D., and B. J. Fraser (1991), Simultaneous observations of Schumann resonances in California and Australia: Evidence for intensity modulation by the local height of D region, J. Geophys. Res., 96, 15,97315,984.
  • Shvets, A. V. (2001), A technique for reconstruction of global lightning distance profile from background Schumann resonance signal, J. Atmos. Sol. Terr. Phys., 63, 10611074.
  • Williams, E. R. (1992), The Schumann resonance: A global tropical thermometer, Science, 256, 11841186.
  • World Meteorological Organization (1956), World distribution of thunderstorm days, part 2: Tangles of marine data and world maps, WMO 21, Geneva, Switzerland.