• alpha particles;
  • Moon;
  • radon

[1] The Lunar Prospector Alpha Particle Spectrometer (APS) was designed to detect characteristic-energy alpha particles from the decay of Rn-222, Po-218, and Po-210 and to therefore map sites of radon release on the lunar surface. These three nuclides are radioactive daughters from the decay of U-238; hence the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. Once released, the radon spreads out by “bouncing” across the surface on ballistic trajectories in a random-walk process. The half-life of Rn-222 allows the gas to spread out by several hundred kilometers before it decays (depositing approximately half of the Po-218 recoil nuclides on the lunar surface) and allows the APS to detect gas release events up to several days after they occur. The long residence time of the Pb-210 precursor to Po-210 allows the mapping of gas vents which have been active over the last approximately 60 years. The APS found only a faint indication of Po-218 alpha particles. However, the Rn-222 alpha particle map shows that radon gas was emanating from the vicinity of craters Aristarchus and Kepler at the time of Lunar Prospector. The Po-210 alpha particle distribution reveals a variability in time and space of lunar gas release events. Po-210 and Rn-222 detections are associated with both thorium enhancements and lunar pyroclastic deposits.