• Barnsley, M. F. (2000), Fractals Everywhere, Elsevier, New York.
  • Barrick, D. E. (1970), Unacceptable height correlation coefficients and the quasi-specular component in rough surface scattering, Radio Sci., 5(4), 647654.
  • Beckmann, P., and A. Spizzichino (1963), The Scattering of Electromagnetic Waves From Rough Surfaces, Elsevier, New York.
  • Campbell, B. A. (2002), Radar Remote Sensing of Planetary Surfaces, Cambridge Univ. Press, New York.
  • Campbell, B. A., and M. K. Shepard (2003), Coherent and incoherent components in near-nadir radar scattering: Applications to radar sounding of Mars, J. Geophys. Res., 108(E12), 5132, doi:10.1029/2003JE002164.
  • Falconer, K. (1990), Fractal Geometry: Mathematical Foundations and Applications, John Wiley, Hoboken, N. J.
  • Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio (1999), Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes, IEEE Trans. Antennas Propag., 47, 14051415.
  • Hagfors, T. (1964), Backscattering from an undulating surface with applications to radar returns from the Moon, J. Geophys. Res., 69, 37793784.
  • Hagfors, T. (1970), Remote probing of the Moon by infrared and microwave emissions and by radar, Radio Sci., 5, 189227.
  • Harmon, J. K., M. A. Slade, and R. S. Hudson (1992), Mars radar scattering: Arecibo/Goldstone results at 12.6- and 3.5-cm wavelengths, Icarus, 98, 240253.
  • Kell, R. E. (1965), On the derivation of bistatic RCS from monostatic measurements, Proc. IEEE, 53, 983988.
  • Mandelbrot, B. B. (1982), The Fractal Geometry of Nature, W. H. Freeman, New York.
  • Ogilvy, J. A. (1991), Theory of Wave Scattering from Random Rough Surfaces, Adam Hilger, Bristol, U. K.
  • Orosei, R., R. Bianchi, A. Coradini, S. Espinasse, C. Fedeico, A. Ferriccioni, and A. I. Gavrishin (2003), Self-affine behavior of Martian topography at kilometer scale from Mars Orbiter Laser Altimeter data, J. Geophys. Res., 108(E4), 8023, doi:10.1029/2002JE001883.
  • Picardi, G., S. Sorge, R. Seu, G. Fedele, C. Federico, and R. Orosei (1999), Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS): Models and system analysis, Tech. Rep. MRS-001/005/99, Dip. Sci. e Tec. dell'Inf. della Comun. (INFOCOM), Univ. of Rome, Rome.
  • Shepard, M. K., and B. A. Campbell (1999), Radar scattering from a self-affine fractal surface: Near-nadir regime, Icarus, 141, 156171.
  • Simpson, R. A. (1976), Surface roughness estimation at three points on the lunar surface using 23-cm monostatic radar, J. Geophys. Res., 81, 44074416.
  • Simpson, R. A., and G. L. Tyler (1982), Radar scattering laws for the lunar surface, IEEE Trans. Antennas Propag., 30, 438449.
  • Sultan-Salem, A. K., and G. L. Tyler (2004), Validity of the Kirchhoff approximation for electromagnetic wave scattering from fractal surfaces, IEEE Trans. Geosci. Remote Sens., 42(9), 18601870.
  • Tsang, L., J. A. Kong, and K. H. Ding (2000), Scattering of Electromagnetic Waves: Theories and Applications, Wiley-Interscience, Hoboken, N. J.
  • Tyler, G. L. (1976), Wavelength dependence in radio wave scattering and specular-point theory, Radio Sci., 11(2), 8391.
  • Voss, R. F. (1985), Random fractal forgeries, in Fundamental Algorithms for Computer Graphics, pp. 805835, Springer, New York.