SEARCH

SEARCH BY CITATION

References

  • Anthoni, P. M., B. E. Law, and M. H. Unsworth (1999), Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem, Agric. For. Meteorol., 95, 151168.
  • Auble, D. L., and T. P. Meyers (1992), An open path, fast response infrared absorption gas analyzer for H2O and CO2, Boundary Layer Meteorol., 59, 243256.
  • Aurela, M., T. Laurila, and J. P. Tuovinen (2004), The timing of snow melt controls the annual CO2 balance in a subarctic fen, Geophys. Res. Lett., 31, L16119, doi:10.1029/2004GL020315.
  • Baldocchi, D. D. (2003), Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future, Global Change Biol., 9, 479492.
  • Baldocchi, D. D., B. B. Hicks, and T. P. Meyers (1988), Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 13311340.
  • Barford, C. C., et al. (2001), Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest, Science, 294, 16881691.
  • Batzli, G. O. (1980), Patterns of vegetation and herbivory in arctic tundra: Results from the Research on Arctic Tundra Environments (RATE) Program, Arct. Alp. Res., 12, 401518.
  • Bilbrough, C. J., J. M. Welker, and W. D. Bowman (2000), Early spring nitrogen uptake by snow-covered plants: A comparison of arctic and alpine plant function under the snowpack, Arct. Antarct. Alp. Res., 32, 404411.
  • Billings, W. D. (1973), Arctic and alpine vegetations: Similarities, differences, and susceptibility to disturbance, BioScience, 23, 697704.
  • Billings, W. D. (1975), Arctic and alpine vegetation: Plants adaptations to cold summer climates, in Arctic and Alpine Environments, edited by J. D. Ives, and R. G. Barry, pp. 403443, Methuen, New York.
  • Billings, W. D., J. O. Luken, D. A. Mortensen, and K. M. Peterson (1983), Increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms, Oecologia, 65, 2629.
  • Blanken, P. D., T. A. Black, P. C. Yang, H. H. Neumann, Z. Nesic, R. Staebler, G. den Hartog, M. D. Novak, and X. Lee (1997), Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components, J. Geophys. Res., 102, 28,91528,927.
  • Bonan, G. B. (1995), Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model, J. Geophys. Res., 100, 28172831.
  • Brooks, P. D., S. K. Schmidt, and M. W. Williams (1997), Winter production of CO2 and N2O from alpine tundra: Environmental controls and relationship to inter-system C and N fluxes, Oecologia, 110, 403413.
  • Brown, J., K. R. Everett, P. J. Webber, S. F. MacLean Jr., and D. F. Murray (1980), The coastal tundra at Barrow, in An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska, edited by J. Brown et al., pp. 129, Dowden, Hutchinson and Ross, Stroudsburg, Pa.
  • Caldwell, M. M., D. A. Johnson, and M. Fareed (1978), Constraints on tundra productivity: Photosynthetic capacity in relation to solar radiation utilization and water stress in Arctic and Alpine tundras, in Vegetation and Production Ecology of an Alaskan Arctic Tundra, edited by L. L. Tieszen, pp. 324342, Springer, New York.
  • Chapin, F. S.III, and G. R. Shaver (1996), Physiological and growth responses of Arctic plants to a field experiment simulating climatic change, Ecology, 77, 822840.
  • Chapin, F. S.III, P. C. Miller, W. D. Billings, and P. I. Coyne (1980), Carbon and nutrient budgets and their control in coastal tundra, in An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska, edited by J. Brown et al., pp. 458482, Dowden, Hutchinson and Ross, Stroudsburg, Pa.
  • Chapin, F. S.III, G. R. Shaver, A. E. Giblin, K. J. Nadelhoffer, and J. A. Launder (1995), Responses of Arctic tundra to experimental and observed changes in climate, Ecology, 76, 694711.
  • Chapin, F. S.III, et al. (2000), Arctic and boreal ecosystems of western North America as components of the climate system, Global Change Biol., 6, 211223.
  • Chapin, F. S.III, et al. (2005), Role of land-surface changes in Arctic summer warming, Science, 310, 657660.
  • Clein, J. S., B. L. Kwiatkowski, A. D. McGuire, J. E. Hobbie, E. B. Rastetter, J. M. Melillo, and D. W. Kicklighter (2000), Modeling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot-and a global-scale ecosystem model to identify process-based uncertainties, Global Change Biol., 6, 127140.
  • Coyne, P. I., and J. J. Kelly (1971), Release of carbon dioxide from frozen soil to the arctic atmosphere, Nature, 234, 407408.
  • Curtis, P. S., P. J. Hanson, P. Bolstad, C. Barford, J. C. Randolph, H. P. Schmid, and K. B. Wilson (2002), Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests, Agric. For. Meteorol., 113, 319.
  • Everett, K. R. (1980), Distribution and variability of soils near Atkassok, Alaska, Arct. Alp. Res., 12, 433446.
  • Fahnestock, J. T., M. H. Jones, P. D. Brooks, D. A. Walker, and J. M. Welker (1998), Winter and early spring CO2 efflux from tundra communities of northern Alaska, J. Geophys. Res., 103, 29,02329,027.
  • Falge, E. D., et al. (2001), Gap filling strategies for defensible annual sums of net ecosystem, Agric. For. Meteorol., 107, 4369.
  • Fan, S. M., S. C. Wofsy, P. S. Bakwin, D. J. Jacob, S. M. Anderson, P. L. Kebabian, J. B. McManus, C. E. Kolb, and D. R. Fitzjarrald (1992), Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra, J. Geophys. Res., 97, 16,62716,643.
  • Frank, A. B., and W. A. Dugas (2001), Carbon dioxide fluxes over a northern, semiarid, mixed-grass prairie, Agric. For. Meteorol., 108, 317326.
  • Friborg, T., T. R. Christensen, and H. Soegarrd (1997), Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micro-meteorological techniques, Geophys. Res. Lett., 24(23), 30613066.
  • Grant, R. F., and P. Rochette (1994), Soil microbial respiration at different temperatures and water potentials: Theory and mathematical modeling, Soil Sci. Soc. Am. J., 58, 16811690.
  • Green, T. G. A., and O. L. Lange (1994), Photosynthesis in poikilohydric plants: A comparison of lichens and bryophytes, in Ecophysiology of Photosynthesis, edited by E. D. Schulze, and M. M. Caldwell, pp. 391342, Springer, New York.
  • Grogan, P., and F. S. Chapin III (2000), Initial effects of experimental warming on above- and below-ground components of net ecosystem CO2 exchange in Arctic tundra, Oecologia, 125, 512520.
  • Grulke, N. E., and L. C. Bliss (1988), Comparative life history characteristics of two high arctic grasses, northwest territories, Ecology, 69, 484496.
  • Grulke, N. E., G. H. Reichers, W. C. Oechel, U. Hjelm, and C. Jaeger (1990), Carbon balance in tussock tundra under ambient and elevated CO2, Oecologia, 83, 483494.
  • Halldn, S., and A. Lindroth (1992), Errors in net radiometry: Comparison and evaluation of sic radiometer designs, J. Atmos. Oceanic Technol., 9, 762783.
  • Harazono, Y., M. Yoshimoto, M. Mano, G. L. Vourlitis, and W. C. Oechel (1998), Characteristics of energy and water budgets over wet sedge and tussock tundra ecosystems at North Slope in Alaska, Hydrol. Processes, 12, 21632183.
  • Harazono, Y., M. Mano, A. Miyata, R. C. Zulueta, and W. C. Oechel (2003), Inter-annual carbon dioxide uptake of a wet sedge tundra ecosystem in the Arctic, Tellus, Ser. B, 55, 215231.
  • Hastings, S. J., W. C. Oechel, and A. Muhlia-Melo (2005), Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico, Global Change Biol., 11, 927936.
  • Heal, O. W., P. W. Flanagan, D. D. French, and S. F. Maclean (1981), Decomposition and accumulation of organic matter, in Tundra Ecosystems, edited by L. C. Bliss, O. W. Heal, and J. J. Moore, pp. 587633, Cambridge Univ. Press, New York.
  • Hinkel, K. M., F. Paetzold, F. E. Nelson, and J. G. Bockheim (2001), Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999, Global Planet. Change, 29(3–4), 293309.
  • Hobbie, S. E., J. P. Schimel, S. E. Trumbore, and J. Randerson (2000), Controls over carbon storage and turnover in high latitude soils, Global Change Biology, 6, 196210.
  • Janssens, I. A., et al. (2001), Productivity overshadows temperature in determining soil and ecosystem respiration across European forests, Global Change Biol., 7, 269278.
  • Johnson, L. C., G. R. Shaver, A. E. Giblin, K. J. Nadelhoffer, E. R. Rastetter, J. A. Laundre, and G. L. Murray (1996), Effects of drainage and temperature on carbon balance of tussock tundra microcosms, Oecologia, 108, 737748.
  • Johnson, L. C., G. R. Shaver, D. H. Cades, E. Rastetter, K. Nadelhoffer, A. Giblin, J. Laundre, and A. Stanley (2000), Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems, Ecology, 81, 453469.
  • Joint Federal State Land Use Planning Commission for Alaska (1973), Major Ecosystems of Alaska, U.S. Geol. Surv., Fairbanks, Alaska.
  • Kane, K. D., L. Hinzman, M. Woo, and K. R. Everett (1991), Arctic hydrology and climate change, in Arctic Ecosystems in a Changing Climate, edited by F. S. Chapin III et al., pp. 3557, Elsevier, New York.
  • King, A. W., W. M. Post, and S. D. Wullschleger (1997), The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2, Clim. Change, 35, 199227.
  • Komárková, V., and P. J. Webber (1980), Two low Arctic vegetation maps near Atkasook, Alaska, Arct. Alp. Res., 12, 447472.
  • Lachenbruch, A. H., and B. V. Marshall (1986), Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic, Science, 234, 689696.
  • Law, B. E., et al. (2002), Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agric. For. Meteorol., 113, 97120.
  • Leadley, P. W., and J. F. Reynolds (1992), Long-term response of an Arctic sedge to climate change: A simulation study, Ecol. Appl., 2(4), 323340.
  • Limbach, W. E., W. C. Oechel, and W. Lowell (1982), Photosynthetic and respiratory responses to temperature and light of three Alaskan tundra growth forms, Holarctic Ecol., 5(2), 150157.
  • Loescher, H. W., S. F. Oberbauer, H. L. Gholz, and D. B. Clark (2003), Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest, Global Change Biol., 9, 396412.
  • Lynch, A. H., W. L. Chapman, J. E. Walsh, and G. Weller (1995), Development of a regional climate model of the western Arctic, J. Clim., 8, 15551570.
  • Maxwell, J. B. (1992), Arctic climate: Potential for change under global warming, in Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, edited by F. S. Chapin III et al., pp. 1134, Elsevier, New York.
  • McFadden, J. P., F. S. Chapin III, and D. Y. Hollinger (1998), Subgrid-scale variability in the surface energy balance of Arctic tundra, J. Geophys. Res., 103, 28,94728,961.
  • McFadden, J. P., W. Eugster, and F. S. Chapin III (2003), A regional study of the controls on water vapor and CO2 exchange in Arctic tundra, Ecology, 84, 27622776.
  • McGuire, A. D., J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace, B. Moore III, and C. J. Vorosmarty (1992), Interaction between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America, Global Biogeochem. Cycles, 6, 101124.
  • McGuire, A. D., J. S. Clein, J. M. Melillo, D. W. Kicklighter, R. A. Meier, C. J. Vorosmarty, and M. C. Serreze (2000), Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate, Global Change Biol., 6, 141159.
  • McMillen, R. T. (1986), A BASIC Program for eddy correlation in non-simple terrain, Tech. Memo. ERL ARL-147, 32 pp., NOAA, Silver Spring, Md.
  • McMillen, R. T. (1988), An eddy correlation technique with extended applicability to non-simple terrain, Boundary Layer Meteorol., 43, 231245.
  • Miller, P. C., W. A. Stoner, and J. R. Ehleringer (1978), Some aspects of water relations of arctic and alpine regions, in Vegetation and Production Ecology of an Alaskan Arctic Tundra, edited by L. L. Tieszen, pp. 343356, Springer, New York.
  • Mullier, S. V., A. E. Racoviteanu, and D. A. Walker (1999), Landsat MSS-derived land-cover map of northern Alaska: Extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps, Int. J. Remote Sens., 20, 29212946.
  • Oberbauer, S. F., J. D. Tenhunen, and J. F. Reynolds (1991), Environmental effects on CO2 efflux from water track and tussock tundra in Arctic Alaska, U. S. A. Arct. Alp. Res., 23, 162169.
  • Oechel, W. C., and N. J. Collins (1976), Comparative CO2 exchange patterns in mosses from two tundra habitats at Barrow, Alaska, Can. J. Bot., 54, 13551369.
  • Oechel, W. C., and B. R. Strain (1985), Native species response to increased atmospheric CO2 concentration, in Direct Effects of Increasing Carbon Dioxide on Vegetation, edited by B. R. Strain, and J. C. Cure, pp. 117154, U.S. Dep. of Energy, Natl. Tech. Info. Serv., Springfield, Va.
  • Oechel, W. C., and B. Sveinbjörnsson (1978), Primary production processes in Arctic bryophytes at Barrow, Alaska, in Vegetation and Production Ecology of an Alaskan Arctic Tundra, edited by L. L. Tieszen, pp. 269298, Springer, New York.
  • Oechel, W. C., and G. L. Vourlitis (1994), The effects of climate change on land-atmosphere feedbacks in Arctic tundra regions, Trends Ecol. Evol., 9, 324329.
  • Oechel, W. C., S. J. Hastings, G. L. Vourlitis, M. Jenkins, G. Riechers, and N. Grulke (1993), Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source, Nature, 361, 520523.
  • Oechel, W. C., G. L. Vourlitis, S. J. Hastings, R. Ault, and P. Bryant (1998), The effects of water table manipulation and elevated temperature on the net CO2 flux of wet-sedge tundra ecosystems, Global Change Biol., 4, 7790.
  • Oechel, W. C., et al. (2000a), A scaling approach for quantifying the net CO2 flux of the Kuparuk River Basin, Alaska, Global Change Biol., 6, 160173.
  • Oechel, W. C., G. L. Vourlitis, S. J. Hastings, R. C. Zulueta, L. Hinzman, and D. Kane (2000b), Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming, Nature, 406, 978981.
  • Olsson, P. Q., M. Sturm, C. H. Racine, V. Romanovsky, and G. E. Liston (2003), Five stages of the Alaskan arctic cold season with ecosystem implications, Arct. Antarct. Alp. Res., 25, 7481.
  • Osterkamp, T. E., and V. E. Romanovsky (1999), Evidence for warming and thawing of discontinuous permafrost in Alaska, Permafrost Periglacial Processes, 10, 1737.
  • Peterson, K. M., W. D. Billings, and D. N. Reynolds (1984), Influence of water table and atmospheric CO2 concentration on the carbon balance of Artic tundra, Arct. Alp. Res., 16, 331335.
  • Ping, C. L., G. J. Michaelson, and J. M. Kimble (1997), Carbon storage along a latitudinal transect in Alaska, Nutr. Cycl. Agroecosyst., 49, 235242.
  • Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberger (1982), Soil carbon pools and world life zones, Nature, 298, 328338.
  • Roth, C. H., M. A. Malicki, and R. Plagge (1992), Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR, J. Soil Sci., 43, 113.
  • Schlesinger, W. H. (1991), Biogeochemistry: An Analysis of Global Change, 443 pp., Elsevier, New York.
  • Schmid, H. P. (1997), Experimental design for flux measurements: Matching scales of observations and fluxes, Agric. For. Meteorol., 87, 179200.
  • Scott, R. L., E. A. Edwards, W. J. Shuttleworth, T. E. Huxman, C. Watts, and D. C. Goodrich (2004), Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem, Agric. For. Meteorol., 122, 6584.
  • Sellmann, P. V., K. L. Carey, C. Keeler, and A. D. Hartwell (1972), Terrain and coastal conditions on the arctic Alaskan coastal plain, ARPA Order 1615, 72 pp., Corps of Eng., Hanover, N. H.
  • Semikhatova, O. A., T. V. Gerasimenko, and T. I. Ivanova (1992), Photosynthesis, respiration, and growth of plants in the Soviet Arctic, in Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, edited by S. F. Chapin III et al., pp. 169192, Elsevier, New York.
  • Shaver, G. R., W. D. Billings, F. S. Chapin III, A. E. Giblin, K. J. Nadelhoffer, W. C. Oechel, and E. B. Rastetter (1992), Global change and the carbon balance of arctic ecosystems, BioScience, 42, 433441.
  • Skre, O., and W. C. Oechel (1981), Moss functioning in different taiga ecosystems in interior Alaska: I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns, Oecologia, 48, 5059.
  • Sommerkorn, M., M. Bölter, and L. Kappen (1999), Carbon dioxide fluxes of soils and mosses in wet tundra of Taimyr Peninsular, Siberia: Controlling factors and contribution to net system fluxes, Polar Res., 18(2), 253260.
  • Stone, R. S., E. G. Dutton, J. M. Harris, and D. Longenecker (2002), Earlier spring snowmelt in northern Alaska as an indicator of climate change, J. Geophys. Res., 107(D10), 4089, doi:10.1029/2000JD000286.
  • Stoner, W. A., and P. C. Miller (1975), Water relations of plant species in the wet coastal tundra at Barrow, Alaska, Arct. Alp. Res., 7, 109124.
  • Suyker, A. E., and S. B. Verma (2001), Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie, Global Change Biol., 7, 279289.
  • Tieszen, L. L. (1973), Photosynthesis and respiration in Arctic tundra grasses: Filed light intensity and temperature response, Arct. Alp. Res., 5, 239251.
  • Tieszen, L. L. (1975), CO2 exchange in the Alaskan arctic tundra: Seasonal changes in the rate of photosynthesis of four species, Photosynthetica, 9(4), 376390.
  • Tieszen, L. L. (1978), Photosynthesis in the principal Barrow, Alaska species: A summary of field and laboratory responses, in Vegetation and Production Ecology of an Alaskan Arctic Tundra, edited by L. L. Tieszen, pp. 241266, Springer, New York.
  • Tieszen, L. L., P. C. Miller, and W. C. Oechel (1980), Photosynthesis, in An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska, edited by J. Brown et al., pp. 102139, Dowden, Hutchinson and Ross, Stroudsburg, Pa.
  • Topp, G. C., J. L. Davis, and A. P. Annan (1980), Elecromagnetic determination of soil water content: Measurement in coaxial transmission lines, Water Resour. Res., 16, 574582.
  • Turner, D. P., et al. (2005), Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring, Global Change Biol., 11, 666684.
  • Twine, T. E., W. P. Kustas, J. M. Norman, D. R. Cook, P. R. Houser, T. P. Meyers, J. H. Prueger, P. J. Starks, and M. L. Wesely (2000), Correcting eddy-covariance flux underestimates over a grassland, Agric. For. Meteorol., 103, 279300.
  • Vourlitis, G. L., and W. C. Oechel (1997), Landscape-scale CO2, H2O vapor and energy flux of moist-wet coastal tundra ecosystems over two growing seasons, J. Ecol., 85, 575590.
  • Vourlitis, G. L., W. C. Oechel, A. Hope, D. Stow, B. Boynton, J. Verfaillie Jr., R. Zulueta, and S. J. Hastings (2000a), Physiological models for scaling plot measurements of CO2 flux across an Arctic tundra landscape, Ecol. Appl., 10, 6072.
  • Vourlitis, G. L., Y. Harazono, W. C. Oechel, M. Yoshimoto, and M. Mano (2000b), Spatial and temporal variations in hectare-scale net CO2 flux, respiration and gross primary production of Arctic tundra ecosystems, Funct. Ecol., 14, 203214.
  • Vourlitis, G. L., J. Verfaillie, W. C. Oechel, A. Hope, D. Stow, and R. Engstrom (2003), Spatial variation in regional CO2 exchange for the Kuparuk River Basin, Alaska over the summer growing season, Global Change Biol., 9, 930941.
  • Walker, D. A., E. Binnian, B. M. Evans, N. D. Lederer, E. Nordstrand, and P. J. Webber (1989), Terrain, vegetation, and landscape evolution of the R4D research site, Brooks Range Foothills, Alaska, Holarctic Ecol., 12, 238261.
  • Walker, D. A., et al. (1998), Energy and trace-gas fluxes across a major arctic soil pH boundary, Nature, 394, 469472.
  • Walker, D. A., et al. (2003), Vegetation-soil-thaw-depth relationships along a low-Arctic bioclimate gradient, Alaska: Synthesis of information from the ATLAS studies, Permafrost Periglacial Processes, 14, 103123.
  • Wang, Y. P., and P. J. Polglase (1995), Carbon balance in the tundra, boreal forest and humid tropical forest during climate change: Scaling up from leaf physiology and soil carbon dynamics, Plant Cell Environ., 18, 12261244.
  • Webb, E. K., G. I. Pearman, and R. Leuning (1980), Correction of flux measurements for density effects due to heat and water vapor transfer, Q. J. R. Meteorol. Soc., 106, 85100.
  • Webber, P. J. (1978), Spatial and temporal variation of the vegetation and its production, Barrow, Alaska, in Vegetation and Production Ecology of an Alaskan Arctic Tundra, edited by L. L. Tieszen, pp. 37112, Springer, New York.
  • Weller, G., and B. Holmgren (1974), The microclimates of the Arctic tundra, J. Appl. Meteorol., 13, 854862.
  • Williams, M., W. Eugster, E. B. Rastetter, J. P. McFadden, and F. S. Chapin III (2000), The controls on net ecosystem productivity along an Arctic transect: A model comparison with flux measurements, Global Change Biol., 6, 116126.
  • Xiao, A., J. M. Melillo, and D. W. Kicklighter (1998), Transient climate change and net ecosystem production of the terrestrial biosphere, Global Biogeochem. Cycles, 12, 345360.