SEARCH

SEARCH BY CITATION

References

  • Affek, H. P., D. Ronen, and D. Yakir (1998), Production of CO2 in the capillary fringe of a deep phreatic aquifer, Water Resour. Res., 34, 989996.
  • Barford, C. C., J. P. Montoya, M. A. Altabet, and R. Mitchell (1999), Steady-state nitrogen isotope effects on N2 and N2O production in Paracoccus denitrificans, Appl. Environ. Microbiol., 65, 989994.
  • Böhlke, J. K. (2002), Groundwater recharge and agricultural contamination, Hydrogeol. J., 10, 438439.
  • Bol, R., S. Toyoda, S. Yamulki, J. M. B. Hawkins, L. M. Cardenas, and N. Yoshida (2003), Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application, Rapid Commun. Mass Spectrom., 17, 25502556.
  • Bol, R., T. Röckmann, M. Blackwell, and S. Yamulki (2004), Influence of flooding on δ15N, δ18O, 1δ15N and 2δ15N signatures of N2O released from estuarine soils—A laboratory experiment using tidal flooding chambers, Rapid Commun. Mass Spectrom., 18, 15611568.
  • Boontanon, N., S. Ueda, P. Kanatharana, and E. Wada (2000), Intramolecular stable isotope ratios of N2O in the tropical swamp forest in Thailand, Naturwissenschaften, 87, 188192.
  • Bremner, J. M., and D. R. Keeney (1965), Steam distillation methods for determination of ammonium, nitrate and nitrite, Anal. Chim. Acta, 43, 485495.
  • Brenninkmeijer, C. A. M., and T. Röckmann (1999), Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis, Rapid Commun. Mass Spectrom., 13, 20282033.
  • Bryan, B. A., G. Shearer, J. L. Skeeters, and D. H. Kohl (1983), Variable expression of the nitrogen isotope effect associated with denitrification of nitrate, J. Biol. Chem., 258, 86138617.
  • Burton, D. L., and E. G. Beauchamp (1994), Profile of nitrous oxide and carbon dioxide concentrations in a soil subject to freezing, Soil Sci. Soc. Am. J., 58, 115122.
  • Casciotti, K. L., D. M. Sigman, M. Galanter Hastings, J. K. Böhlke, and A. Hilkert (2002), Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 49054912.
  • Frede, G. (1986), Der Gasaustausch des Bodens, Göttinger Bodenkd. Ber., 87, 1130.
  • Groffman, P. M., A. J. Gold, and K. Addy (2000), Nitrous oxide production in riparian zones and its importance to national emission inventories, Chemos. Global Change Sci., 2, 291299.
  • Groffman, P. M., A. J. Gold, D. Q. Kellog, and K. Addy (2002), Mechanisms, rates and assessment of N2O in groundwater, riparian zones and rivers, in Non-CO2Greenhouse Gases, Proceedings NCGG-3, edited by J. Van Ham et al., pp. 159166, Millpress, Rotterdam, Netherlands.
  • Hefting, M. M., R. Bobbink, and H. de Caluwe (2003), Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones, J. Environ. Qual., 32(4), 11941203.
  • Heincke, M., and M. Kaupenjohann (1999), Effects of soil solution on the dynamics of N2O emission: A review, Nutr. Cycling Agroecosyst., 55, 133157.
  • Holtan-Hartwig, L., P. Dörsch, and L. R. Bakken (2000), Comparison of denitrifying communities in organic soils: Kinetics of NO3 and N2O reduction, Soil Biol. Biochem., 32, 833843.
  • Holtan-Hartwig, L., P. Dörsch, and L. R. Bakken (2002), Low temperature control of soil denitrifying communities: Kinetics of N2O production and reduction, Soil Biol. Biochem., 34, 17971806.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
  • Kendall, C., and R. Aravena (1999), Nitrate isotopes in groundwater systems, in Environmental Tracers in Subsurface Hydrology, edited by P. G. Cook, and A. L. Herczeg, pp. 261297, Springer, New York.
  • Kuntze, H., G. Roeschmann, and G. Schwerdtfeger (1985), Bodenkunde, 424 pp., Ulmer, Stuttgart, Germany.
  • Landwehr, B., M. Kayser, and J. Müller (2001), Untersuchungen zum Einfluss der Stickstoffdüngung auf den Nitrataustrag in intensiven Futterbausystemen mittels der Saugkerzen-Methode, research report, 36 pp., Res. Cent. for Animal Prod. and Technol. of the Univ. of Göttingen, Vechta, Germany.
  • McConnaughey, P. K., D. R. Bouldin, and J. M. Duxbury (1985), Transient microsite models of denitrification: II. Model results, Soil Sci. Soc. Am. J., 49, 891895.
  • McMahon, P. B., B. W. Bruce, and K. F. Dennehy (2000), Occurrence of nitrous oxide in the Central High Plains aquifer, Environ. Sci. Technol., 34, 48734878.
  • Mosier, A. R., C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. Van Cleemput (1998), Closing the N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle, Nutr. Cycl. Agroecosyst., 52, 225248.
  • Mühlherr, I. H., and K. M. Hiscock (1998), Nitrous oxide production and consumption in British limestone aquifers, J. Hydrol., 211, 126139.
  • Naqvi, S. W. A., T. Yoshinari, D. A. Jayakumar, M. A. Altabet, P. V. Narvekar, A. H. Devol, J. A. Brandes, and L. A. Codispoti (1998), Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea, Nature, 394, 462464.
  • Nevison, C. (2000), Review of the IPCC methodology for estimating nitrous oxide emissions associated with agricultural leaching and runoff, Chemos. Global Change Sci., 2, 493500.
  • Ostrom, N. E., M. E. Russ, B. Popp, T. M. Rust, and D. M. Karl (2000), Mechanisms of nitrous oxide production in the subtropical North Pacific based on determinations of the isotopic abundances of nitrous oxide and di-nitrogen, Chemos. Global Change Sci., 2, 281290.
  • Ostrom, N. E., L. O. Hedin, J. C. von Fischer, and G. P. Robertson (2002), Nitrogen transformations and NO3 removal at a soil-stream interface: A stable isotope approach, Ecol. Appl., 12, 10271043.
  • Ostrom, P. H., A. J. Pitt, R. L. Sutka, N. E. Ostrom, L. Fang, and H. Gandhi (2004), Characterization of isotopomer fractionation during consumption of nitrous oxide in pure culture and soils, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract B21A-0852.
  • Pérez, T., S. E. Trumbore, S. C. Tyler, E. A. Davidson, M. Keller, and P. B. De Camargo (2000), Isotopic variability of N2O emissions from tropical forest soils, Global Biogeochem. Cycles, 14, 525535.
  • Pérez, T., S. E. Trumbore, S. C. Tyler, P. A. Matson, I. Ortiz-Monasterio, T. Rahn, and D. W. Griffith (2001), Identifying the agricultural imprint on the global N2O budget using stable isotopes, J. Geophys. Res., 106, 98699878.
  • Popp, B. N., et al. (2002), Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre, Global Biogeochem. Cycles, 16(4), 1064, doi:10.1029/2001GB001806.
  • Reay, D. S., K. A. Smith, and A. C. Edwards (2003), Nitrous oxide in agricultural drainage waters, Global Change Biol., 9(2), 195203.
  • Röckmann, T., J. Kaiser, and C. A. M. Brenninkmeijer (2003), The isotopic fingerprint of the pre-industrial and the anthropogenic N2O source, Atmos. Chem. Phys., 3, 315323.
  • Sawamoto, T., Y. Nakajima, M. Kasuya, H. Tsuruta, and K. Yagi (2005), Evaluation of emission factors for indirect N2O emission due to nitrogen leaching in agro-ecosystems, Geophys. Res. Lett., 32, L03403, doi:10.1029/2004GL021625.
  • Schmidt, H.-L., R. A. Werner, N. Yoshida, and R. Well (2004), Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects, Rapid Commun. Mass Spectrom., 18, 20362040.
  • Stein, L. Y., and Y. L. Yung (2003), Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide, Annu. Rev. Earth Planet. Sci., 31, 329356.
  • Sutka, R. L., N. E. Ostrom, P. H. Ostrom, H. Gandhi, and J. A. Breznak (2003), Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath, Rapid Commun. Mass Spectrom., 17, 738745.
  • Sutka, R. L., N. E. Ostrom, P. H. Ostrom, H. Gandhi, and J. A. Breznak (2004a), Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath, Erratum, Rapid Commun. Mass Spectrom., 18, 14111412.
  • Sutka, R. L., J. A. Breznak, N. E. Ostrom, P. H. Ostrom, A. J. Pitt, and H. Gandhi (2004b), Using pure cultures to define the site preference of nitrous oxide produced by microbial nitrification and denitrification, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract B21A-0861.
  • Tilsner, J., N. Wrage, J. Lauf, and G. Gebauer (2003), Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany, Biogeochemistry, 63, 229247.
  • Toyoda, S., and N. Yoshida (1999), Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer, Anal. Chem., 71, 47114718.
  • Toyoda, S., N. Yoshida, T. Miwa, Y. Matsui, H. Yamagishi, U. Tsunogai, Y. Nojiri, and N. Tsurushima (2002), Production mechanism and global budget of N2O inferred from its isotopomers in the western North Pacific, Geophys. Res. Lett., 29(3), 1037, doi:10.1029/2001GL014311.
  • Toyoda, S., et al. (2004), Temporal and latitudinal distributions of stratospheric N2O isotopomers, J. Geophys. Res., 109, D08308, doi:10.1029/2003JD004316.
  • Toyoda, S., H. Mutobe, H. Yamagishi, N. Yoshida, and Y. Tanji (2005), Fractionation of N2O isotopomers during production by denitrifiers, Soil Biol. Biochem., 37, 15351545.
  • Wada, E., and S. Ueda (1996), Carbon, nitrogen, and oxygen isotope ratios of CH4 and N2O in soil ecosystems, in Mass Spectrometry of Soils, edited by T. B. Boutton, and S. Yamasaki, 517 pp., CRC Press, Boca Raton, Fla.,
  • Well, R. (2002), Methodical approaches for investigating the role of subsurface environments in the global N2O budget, in Non-CO2Greenhouse Gases, Proceedings NCGG-3, edited by J. Van Ham et al., pp. 167178, Millpress, Rotterdam, Netherlands.
  • Well, R., and D. D. Myrold (1999), Laboratory evaluation of a new method for in situ measurement of denitrification in water-saturated soils, Soil Biol. Biochem., 31, 11091119.
  • Well, R., J. Augustin, J. Davis, S. M. Griffith, K. Meyer, and D. D. Myrold (2001), Production and transport of denitrification gases in shallow ground water, Nutr. Cycl. Agroecosyst., 60, 6570.
  • Well, R., R. Brumme, M. Deurer, H. Flessa, S. Toyoda, and N. Yoshida (2003a), Isotopomer signatures of N2O from denitrification in soils and ground water: Simulations and measurements, in 2nd International Symposium on Isotopomers, edited by C. Guillou, and J. Ryder, pp. 411, Inst. for Health and Consumer Prot., Joint Res. Cent., Eur. Comm., Stresa, Italy.
  • Well, R., J. Augustin, K. Meyer, and D. D. Myrold (2003b), Comparison of field and laboratory measurement of denitrification and N2O production in the saturated zone of hydromorphic soils, Soil Biol. Biochem., 35, 783799.
  • Well, R., O. Mehranfar, H. Höper, and K. Meyer (2005), Denitrification in the saturated zone of hydromorphic soils—Laboratory measurement, regulating factors and stochastic modelling, Soil Biol. Biochem., 37, 18221836.
  • Wrage, N., J. Lauf, A. Prado, M. Pinto, S. Pietrzak, S. Yamulki, O. Oenema, and G. Gebauer (2004), Distinguishing sources of N2O in European grasslands by stable isotope analysis, Rapid Commun. Mass Spectrom., 18, 12011207.
  • Yamulki, S., S. Toyoda, N. Yoshida, E. Veldkamp, B. Grant, and R. Bol (2001), Diurnal fluxes and the isotopomer ratios of N2O in a temperate grassland following urine amendment, Rapid Commun. Mass Spectrom., 15, 12631269.
  • Yoshida, N., and S. Toyoda (2000), Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers, Nature, 405, 330334.