SEARCH

SEARCH BY CITATION

References

  • Altabet, M. A., R. Francois, D. W. Murray, and W. L. Prell (1995), Climate related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios, Nature, 373, 506509.
  • Andersen, N., P. J. Müller, G. Kirst, and R. R. Schneider (1999), Alkenone δ13C as a proxy for past CO2 in surface waters: Results from the Late Quaternary Angola Current, in Use of Proxies in Paleoceanography: Examples From the South Atlantic, edited by G. Fischer, and G. Wefer, pp. 469488, Springer, New York.
  • Antonov, J. I., S. Levitus, T. P. Boyer, M. E. Conkright, and T. O'Brien (1998), World Ocean Atlas 1998, vol. 1, Atlantic Ocean Temperature Fields, NOAA Atlas NESDIS 27, NOAA, Silver Spring, Md.
  • Beck, W. C., E. L. Grossman, and J. W. Morse (2005), Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C, Geochim. Cosmochim. Acta, 69, 34933503.
  • Beerling, D. J., M. R. Lomas, and D. R. Groecke (2002), On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian ocean anoxic events, Am. J. Science, 302, 2849.
  • Berner, R. A., and Z. Kothavala (2001), GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182204.
  • Bice, K. L. (2004), The isotopic signal of glacioeustacy in the greenhouse world, paper presented at 8th International Conference on Paleoceanography, Cent. Natl. de la Rech. Sci., Biarritz, France. (Available at http://www.icp8.cnrs.fr/speaker_abstracts.pdf).
  • Bice, K. L., and R. D. Norris (2002), Possible atmospheric CO2 extremes of the warm mid-Cretaceous (late Albian-Turonian), Paleoceanography, 17(4), 1070, doi:10.1029/2002PA000778.
  • Bice, K. L., and R. D. Norris (2005), Data report: Stable isotope ratios of foraminifers from ODP Leg 207, Sites 1257, 1258, and 1260 and a cleaning procedure for foraminifers in organic-rich shales [online], in Proc. Ocean Drill. Program Sci. Results, 207. (Available at http://www-odp.tamu.edu/publications/207_SR/104/104.htm).
  • Bice, K. L., C. R. Scotese, D. Seidov, and E. J. Barron (2000), Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models, Palaeogeogr. Palaeoclimatol. Palaeoecol., 161, 295310.
  • Bice, K. L., B. T. Huber, and R. D. Norris (2003), Extreme polar warmth during the Cretaceous greenhouse?: The paradox of the Late Turonian Record at DSDP Site 511, Paleoceanography, 18(2), 1031, doi:10.1029/2002PA000848.
  • Bice, K. L., G. Layne, and K. Dahl (2005), Application of secondary ion mass spectrometry to the determination of Mg/Ca in rare, delicate, or altered planktonic foraminifera: Examples from the Holocene, Paleogene, and Cretaceous, Geochem. Geophys. Geosyst., 6, Q12P07, doi:10.1029/2005GC000974.
  • Bidigare, R. B., et al. (1997), Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae, Global Biogeochem. Cycles, 11, 279292. (Correction, Global Biogeochem. Cycles, 13, 251.).
  • Boyle, E. A., and L. D. Keigwin (1985), Comparison of Atlantic and Pacific paleochemical records for the last 250,000 years: Changes in deep ocean circulation and chemical inventories, Earth Planet. Sci. Lett., 76, 135150.
  • Boyle, E., and Y. Rosenthal (1996), Chemical hydrography of the South Atlantic during the Last Glacial Maximum: Cd vs. δ13C, in The South Atlantic: Present and Past Circulation, edited by G. Wefer et al., pp. 423443, Springer, New York.
  • Brooks, J. D., K. W. Gould, and J. W. Smith (1969), Isoprenoid hydrocarbons in coal and petroleum, Nature, 222, 257259.
  • Courtillot, V., C. Jaupart, I. Manighetti, P. Tapponnier, and J. Besse (1999), On causal links between flood basalts and continental breakup, Earth Planet. Sci. Lett., 166, 177195.
  • Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor (2003), An overview of results from the Coupled Model Intercomparison Project, Global Planet. Change, 37, 103133.
  • Dekens, P. S., D. W. Lea, D. K. Pak, and H. J. Spero (2002), Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation, Geochem. Geophys. Geosyst., 3(4), 1022, doi:10.1029/2001GC000200.
  • Dickson, J. A. D. (2002), Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans, Science, 298, 12221224.
  • Ekart, D. D., T. E. Cerling, I. P. Montanez, and N. J. Tabor (1999), A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805827.
  • Elderfield, H., and G. Ganssen (2000), Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios, Nature, 405, 442445.
  • Erbacher, J., et al. (2004), Proceedings of the Ocean Drilling Program, Initial Reports [online], vol. 207, Tex. A&M Univ., College Station. (Available at http://www-odp.tamu.edu/publications/207_IR/207ir.htm).
  • Erez, J., and B. Luz (1983), Experimental paleotemperature equation for planktonic foraminifera, Geochim. Cosmochim. Acta, 47, 10251031.
  • Fletcher, B. J., D. J. Beerling, S. J. Brentnall, and D. L. Royer (2005), Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and a Cretaceous case study, Global Biogeochem. Cycles, 19, GB3012, doi:10.1029/2005GB002495.
  • Freeman, K. H., and J. M. Hayes (1992), Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cycles, 6, 185198.
  • Gautier, D. L. (1986), Cretaceous shales from the western interior of North America: Sulfur/carbon ratios and sulfur-isotope composition, Geology, 14, 225228.
  • Goericke, R., J. P. Montoya, and B. Fry (1994), Physiology of isotope fractionation in algae and cyanobacteria, in Stable Isotopes in Ecology and Environmental Science, edited by K. Lajtha, and R. H. Michener, pp. 187221, Blackwell Sci., Malden, Mass.
  • Gough, D. O. (1981), Solar interior structure and luminosity variations, Sol. Phys., 74, 2134.
  • Hancock, J. M., and E. G. Kauffman (1979), The great transgressions of the Late Cretaceous, J. Geol. Soc., 136, 175186.
  • Hardie, L. A. (1996), Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24, 279283.
  • Haworth, M., S. P. Hesselbo, J. C. McElwain, S. A. Robinson, and J. W. Brunt (2005), Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae), Geology, 33, 749752.
  • Hayes, J. M. (1993), Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence, Mar. Geol., 113, 111125.
  • Huber, B. T. (1998), Tropical paradise at the Cretaceous poles? Science, 282, 21992200.
  • Huber, B. T., D. A. Hodell, and C. P. Hamilton (1995), Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients, Geol. Soc. Am. Bull., 107, 11641191.
  • Hut, G. (1987), Consultants group meeting on stable isotope reference samples for geochemical and hydrological investigations, report, 42 pp., Int. At. Energy Agency, Vienna.
  • Jahren, A. H. (2002), The biogeochemical consequences of the Mid-Cretaceous superplume, J. Geodyn., 34, 177191.
  • Jasper, J. P., J. M. Hayes, A. C. Mix, and F. G. Prahl (1994), Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years, Paleoceanography, 9, 781798.
  • Jenkyns, H. C., A. Forster, S. Schouten, and J. S. Damste (2004), High temperatures in the Late Cretaceous Arctic Ocean, Nature, 432, 888892.
  • Kauffman, E. G., and W. G. E. Caldwell (1993), The western interior basin in space and time, in Evolution of the Western Interior Basin, edited by W. G. E. Caldwell, and E. G. Kauffman, Geol. Assoc. Can. Spec. Pap., 39, 30 pp.
  • Kirk-Davidoff, D. B., D. P. Schrag, and J. G. Anderson (2002), On the feedback of stratospheric clouds on polar climate, Geophys. Res. Lett., 29(11), 1556, doi:10.1029/2002GL014659.
  • Lea, D. W., T. A. Mashiotta, and H. J. Spero (1999), Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing, Geochim. Cosmochim. Acta, 63, 23692379.
  • Lelieveld, J., P. J. Crutzen, and C. Bruhl (1993), Climate effects of atmospheric methane, Chemosphere, 26, 739768.
  • Ludvigson, G. A., L. A. Gonzalez, D. F. Ufnar, B. J. Witzke, and R. L. Brenner (2002), Methane fluxes from Mid-Cretaceous wetland soils: Insights gained from carbon and oxygen isotopic studies of sphaerosiderites in paleosols, Geol. Soc. Am. Abstr. Programs, 34, 212.
  • MacConnell, A. B., R. M. Leckie, and J. Hall (2003), Submarine hydrothermal activity and secular changes in Mid-Cretaceous seawater chemistry, Geol. Soc. Am. Abstr. Programs, 35, 204.
  • Martin, P. A., and D. W. Lea (2002), A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca, Geochem. Geophys. Geosyst., 3(10), 8401, doi:10.1029/2001GC000280.
  • McArthur, J. M., R. J. Howarth, and T. R. Bailey (2001), Strontium isotope stratigraphy; LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age, J. Geol., 109, 155170.
  • Meyers, P. A., S. M. Bernasconi, and A. Forster (2006), Origins and accumulation of organic matter in Albian to Santonian black shale sequences on the Demerara Rise, South American Margin, Org. Geochem., in press.
  • Miller, K. G., P. J. Sugarman, J. V. Browning, M. A. Kominz, J. C. Hernandez, R. K. Olsson, J. D. Wright, M. D. Feigenson, and W. Van Sickel (2003), A chronology of Late Cretaceous sequences and sea-level history: Glacioeustasy during the Greenhouse World, Geology, 31, 585588.
  • Miller, K. G., M. A. Kominz, J. V. Browning, J. D. Wright, G. S. Mountain, M. E. Katz, P. J. Sugarman, B. S. Cramer, N. Christie-Blick, and S. F. Pekar (2005), The Phanerozoic record of global sea-level change, Science, 310, 12931298.
  • Mook, W. G., J. C. Bommerson, and W. H. Stabermann (1974), Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sci. Letters, 22, 169176.
  • Müller, G., and M. Gastner (1971), The “Karbonat-Bombe,” a simple device for the determination of the carbonate content in sediments, soils and other materials, Neues Jahrb. Mineral. Abh., 10, 466469.
  • Norris, R. D., K. L. Bice, E. A. Magno, and P. A. Wilson (2002), Jiggling the tropical thermostat during the Cretaceous hot house, Geology, 30, 299302.
  • Nürnberg, D., J. Bijma, and C. Hemleben (1996), Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures, Geochim. Cosmochim. Acta, 60, 803814.
  • Otto-Bliesner, B. L., E. C. Brady, and C. Shields (2002), Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model, J. Geophys. Res., 107(D2), 4019, doi:10.1029/2001JD000821.
  • Pavlov, A. A., M. T. Hurtgen, J. F. Kasting, and M. A. Arthur (2003), Methane-rich Proterozoic atmosphere? Geology, 31, 8790.
  • Peters, K. E., and J. M. Moldowan (1993), The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments, 363 pp., Prentice-Hall, Upper Saddle River, N. J.
  • Peters, R. B., and L. C. Sloan (2000), High concentrations of greenhouse gases and polar stratospheric clouds: A possible solution to high-latitude faunal migration at the latest Paleocene thermal maximum, Geology, 28, 979982.
  • Phinney, E. J., P. Mann, M. F. Coffin, and T. H. Shipley (1999), Sequence stratigraphy, structure, and tectonic history of the southwestern Ontong Java Plateau adjacent to the North Solomon trench and Solomon Islands arc, J. Geophys. Res., 104, 20,44920,466.
  • Popp, B. N., E. A. Laws, R. R. Bidigare, J. E. Dore, K. L. Hanson, and S. G. Wakeham (1998), Effect of phytoplankton cell geometry on carbon isotopic fractionation, Geochim. Cosmochim. Acta, 62, 6977.
  • Popp, B. N., et al. (1999), Controls on the carbon isotopic composition of Southern Ocean phytoplankton, Global Biogeochem. Cycles, 13, 827843.
  • Poulsen, C. J., E. J. Barron, M. A. Arthur, and W. H. Peterson (2001), Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings, Paleoceanography, 16, 576592.
  • Rau, G. H., U. Riebesell, and D. Wolf-Gladrow (1996), A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake, Mar. Ecol. Prog. Ser., 133, 275285.
  • Raven, J. A., and A. M. Johnston (1991), Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources, Limnol. Oceanogr., 36, 17011714.
  • Retallack, G. J. (2001), A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles, Nature, 411, 287290.
  • Ries, J. B. (2004), Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: A record of the oceanic Mg/Ca ratio over the Phanerozoic, Geology, 32, 981984, doi:10.1130/G20851.
  • Robinson, R. S., P. A. Meyers, and R. W. Murray (2002), Geochemical evidence for variations in delivery and deposition of sediment in Pleistocene light-dark color cycles under the Benguela Current Upwelling System, Mar. Geol., 180, 249270.
  • Rosenthal, Y., E. A. Boyle, L. Labeyrie, and D. Oppo (1995), Glacial enrichments of authigenic Cd and U in subantarctic sediments: A climatic control on the elements' oceanic budget? Paleoceanography, 10, 395413.
  • Rosenthal, Y., E. A. Boyle, and N. C. Slowey (1997), Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography, Geochim. Cosmochim. Acta, 61, 36333643.
  • Royer, D. L. (2003), Estimating latest Cretaceous and Tertiary atmospheric CO2 from stomatal indices, in Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by S. L. Wing et al., Spec. Pap. Geol. Soc. Am., 369, 7993.
  • Royer, D. L., R. A. Berner, and D. J. Beerling (2001), Phanerozoic atmospheric CO2 change: Evaluating geochemical and paleobiological approaches, Earth Sci. Rev., 54, 349392.
  • Royer, D. L., R. A. Berner, I. P. Montanez, N. J. Tabor, and D. J. Beerling (2004), CO2 as a primary driver of Phanerozoic climate, GSA Today, 14, 410.
  • Russell, A. D., B. Hosnisch, H. J. Spero, and D. W. Lea (2004), Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera, Geochim. Cosmochim. Acta, 68, 43474361.
  • Schouten, S., W. C. M. Klein Breteler, P. Blokker, N. Schogt, W. I. C. Rijpstra, K. Grice, M. Baas, and J. S. Sinninghe Damste (1998), Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: Implications for deciphering the carbon isotopic biomarker record, Geochim. Cosmochim. Acta, 62, 13971406.
  • Shackleton, N. J., and J. P. Kennett (1975), Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281, Deep Sea Drill. Proj. Initial Rep., 29, 743755.
  • Spero, H. J., J. Bijma, D. W. Lea, and A. D. Russell (1997), Deconvolving glacial ocean carbonate chemistry from the planktonic foraminifera carbon isotope record, in Reconstructing Ocean History: A Window Into the Future, edited by F. Abrantes, and A. C. Mix, pp. 329342, Springer, New York.
  • Stanley, S. M., and L. A. Hardie (1998), Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry, Palaeogeogr. Palaeoclimatol. Palaeoecol., 144, 319.
  • Stanley, S. M., J. B. Ries, and L. A. Hardie (2002), Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition, Proc. Natl. Acad. Sci. U. S. A., 99, 15,32315,326.
  • Stoll, H. M., and D. P. Schrag (2000), High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geol. Soc. Am. Bull., 112, 308319.
  • Suganuma, Y., and J. G. Ogg (2006), Campanian through Eocene magnetostratigraphy of Sites 1257–1261, ODP Leg 207, Demerara Rise (western equatorial Atlantic) [online], Proc. Ocean Drill. Program Sci. Results, 207, in press.
  • Summons, R. E., L. L. Jahnke, and Z. Roksandic (1994), Carbon isotopic fractionation in lipids from methanotrophic bacteria: Relevance for interpretation of the geochemical record of biomarkers, Geochim. Cosmochim. Acta, 58, 28532863.
  • Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global atmospheric CO2 budget, Science, 247, 14311438.
  • Veizer, J., et al. (1999), 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 161, 5988.
  • Wallmann, K. (2001), The geological water cycle and the evolution of marine δ18O values, Geochim. Cosmochim. Acta, 65, 24692485.
  • Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of an non-ideal gas, Mar. Chem., 2, 203215.
  • Weissert, H., and E. Erba (2004), Volcanism, CO2 and palaeoclimate: A Late Jurassic-Early Cretaceous carbon and oxygen isotope record, J. Geol. Soc. London, 161, 695702.
  • Whittaker, S. G., and T. K. Kyser (1990), Effects of sources and diagenesis on the isotopic and chemical composition of carbon and sulfur in Cretaceous shales, Geochim. Cosmochim. Acta, 54, 27992810.
  • Wilson, P. A., R. D. Norris, and M. J. Cooper (2002), Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise, Geology, 30, 607610.
  • Yapp, C. J., and H. Poths (1996), Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure, Earth Planet. Sci. Lett., 137, 7182.
  • Zachos, J. C., L. D. Stott, and K. C. Lohmann (1994), Evolution of early Cenozoic marine temperatures, Paleoceanography, 9, 353387.
  • Zeebe, R. E. (1999), An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes, Geochim. Cosmochim. Acta, 63, 20012007.
  • Zeebe, R. E. (2005), Large effect of hydration on 18O fractionation between H2O and CO32−: Implications for the pH-carbonate-δ18O relationship and inferred climate changes, Geophys. Res. Abstr., 7, Abstract 03798.