SEARCH

SEARCH BY CITATION

References

  • Benzon, H. H., A. S. Nielsen, L. Olesen, M. S. Lohmann, and A. S. Jensen (2004), DMI LEO-LEO radio occultation simulation chain, ESA Contract 16743/02/NL/FF, Atmos. and Ionos. Res. Div., Dan. Meteorol. Inst., Copenhagen.
  • Beyerle, G., J. Wickert, T. Schmidt, and C. Reigber (2004), Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractivity bias using CHAMP observations, J. Geophys. Res., 109, D01106, doi:10.1029/2003JD003922.
  • Born, M., and E. Wolf (1999), Principles of Optics, Cambridge Univ. Press, New York.
  • Eriksson, P., C. Jiménez, D. Murtagh, G. Elgered, T. Kuhn, and S. Bühler (2003), Measurement of tropospheric/stratospheric transmission at 10–35 GHz for H2O retrieval in low Earth orbiting satellite links, Radio Sci., 38(4), 8069, doi:10.1029/2002RS002638.
  • Eshleman, V. R., D. O. Muhleman, P. D. Nicholson, and P. G. Steffes (1980), Comment on absorbing regions in the atmosphere of Venus as measured by radio occultation, Icarus, 44, 793803.
  • Facheris, L., F. Argenti, F. Cuccoli, and L. Mucchi (2004), End-to-end simulation of a K-band LEO-LEO satellite link for estimating water vapor in the low troposphere, paper presented at 11th SPIE International Symposium on Remote Sensing: Remote Sensing of Clouds and the Atmosphere VII, Int. Soc. for Opt. Eng. Maspalomas, Spain, 13 – 16 Sept.
  • Gorbunov, M. E. (2001), Radioholographic methods for processing radio occultation data in multi-path regions, Sci. Rep. 01-02, Dan. Meteorol. Inst., Copenhagen.
  • Gorbunov, M. E. (2002a), Radio-holographic analysis of Microlab-1 radio occultation data in the lower troposphere, J. Geophys. Res., 107(D12), 4156, doi:10.1029/2001JD000889.
  • Gorbunov, M. E. (2002b), Canonical transform method for processing radio occultation data in the lower troposphere, Radio Sci., 37(5), 1076, doi:10.1029/2000RS002592.
  • Gorbunov, M. E. (2003), An asymptotic method of modeling radio occultations, J. Atmos. Sol. Terr. Phys., 65, 13611367.
  • Gorbunov, M. E., and A. S. Gurvich (1998), Algorithms of inversion of Microlab-1 satellite data including effects of multi-path propagation, Int. J. Remote Sensing, 19, 22832300.
  • Gorbunov, M. E., and G. Kirchengast (2004), Processing X/K-band radio occultation data in presence of turbulence, in Atmosphere and Climate: Studies by Occultation Methods, edited by U. Foelsche, G. Kirchengast, and A. K. Steiner, pp. 183192, Springer, New York.
  • Gorbunov, M. E., and G. Kirchengast (2005a), Processing X/K band radio occultation data in the presence of turbulence, Radio Sci., 40, RS6001, doi:10.1029/2005RS003263.
  • Gorbunov, M. E., and G. Kirchengast (2005b), Advanced wave-optics processing of LEO-LEO radio occultation data in presence of turbulence, ESA/ESTEC Tech. Rep. 1/2005, Univ. of Graz, Graz, Austria.
  • Gorbunov, M. E., and K. B. Lauritsen (2004), Analysis of wave fields by Fourier integral operators and their application for radio occultations, Radio Sci., 39, RS4010, doi:10.1029/2003RS002971.
  • Gorbunov, M. E., A. S. Gurvich, and L. Bengtsson (1996), Advanced algorithms of inversion of GPS/MET satellite data and their application to reconstruction of temperature and humidity, Tech. Rep. 211, Max Planck Inst. for Meteorol., Hamburg, Germany.
  • Gorbunov, M. E., H.-H. Benzon, A. S. Jensen, M. S. Lohmann, and A. S. Nielsen (2004), Comparative analysis of radio occultation processing approaches based on Fourier integral operators, Radio Sci., 39, RS6004, doi:10.1029/2003RS002916.
  • Herman, B., D. Feng, D. Flittner, E. R. Kursinski, S. Syndergaard, and D. Ward (2002), An overview of the Univ. of Arizona's ATOMS project, paper presented at 1st International Workshop on Occultations for Atmosphere and Climate, Eur. Space Agency, Graz, Austria.
  • Hinson, D. P., F. M. Flasar, A. J. K. P. J. Schinder, J. D. Twicken, and R. G. Herrera (1997), Jupiter's ionosphere: Results from the first Galileo radio occultation experiment, Geophys., Res. Lett., 24(17), 21072110.
  • Hinson, D. P., J. D. Twicken, and E. T. Karayel (1998), Jupiter's ionosphere: New results from Voyager 2 radio occultation measurements, J. Geophys. Res., 103, 95059520.
  • Hocke, K. A., A. G. Pavelyev, O. I. Yakovlev, L. Barthes, and N. Jakowski (1999), Radio occultation data analysis by the radioholographic method, J. Atmos. Sol. Terr. Phys., 61, 11691177.
  • Jensen, A. S., M. S. Lohmann, H. Benzon, and A. S. Nielsen (2003), Full spectrum inversion of radio occultation signals, Radio Sci., 38(3), 1040, doi:10.1029/2002RS002763.
  • Jensen, A. S., M. S. Lohmann, A. S. Nielsen, and H. Benzon (2004), Geometrical optics phase matching of radio occultation signals, Radio Sci., 39, RS3009, doi:10.1029/2003RS002899.
  • Kirchengast, G., and P. Høeg (2004), The ACE+ mission: Atmosphere and climate explorer based on GNSS-LEO and LEO-LEO radio occultation, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast, U. Foelsche, and A. K. Steiner, pp. 201220, Springer, New York.
  • Kirchengast, G., J. Fritzer, M. Schwaerz, S. Schweitzer, and L. Kornblueh (2004a), The Atmosphere and Climate Explorer mission ACE+: Scientific algorithms and performance overview, ESA/ESTEC Tech. Rep. 2/2004, Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Graz, Austria.
  • Kirchengast, G., S. Schweitzer, J. Ramsauer, J. Fritzer, and M. Schwaerz (2004b), Atmospheric profiles retrieved from ACE+ LEO-LEO occultation data: Statistical performance analysis using geometric optics processing, ESA/ESTEC Tech. Rep. 1/2004, Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Graz, Austria.
  • Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy (1997), Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102, 23,42923,466.
  • Kursinski, E. R., S. S. Leroy, and B. Herman (2000), The radio occultation technique, Terr. Atmos. Oceanic Sci., 11, 53114.
  • Kursinski, E. R., S. Syndergaard, D. Flittner, D. Feng, G. Hajj, B. Herman, D. Ward, and T. Yunck (2002), A microwave occultation observing system optimized to characterize atmospheric water, temperature and geopotential via absorption, J. Atmos. Oceanic Technol., 19(12), 18971914.
  • Liebe, H. J. (1989), MP—An atmospheric millimeter-wave propagation model, Int. J. Infrared Millimeter Waves, 10, 631650.
  • Lindal, G. F., J. R. Lyons, D. N. Sweetnam, V. R. Eshleman, D. P. Hinson, and G. L. Tyler (1987), The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2, J. Geophys. Res., 92, 14,98715,001.
  • Lohmann, M. S., L. Olsen, H.-H. Benzon, A. S. Nielsen, A. S. Jensen, and P. Høeg (2003a), Water vapour profiling using LEO-LEO inter-satellite links, paper presented at Atmospheric Remote Sensing using Satellite Navigation Systems, Union Radio Sci. Int., Matera, Italy.
  • Lohmann, M. S., A. S. Jensen, H.-H. Benzon, and A. S. Nielsen (2003b), Radio occultation retrieval of atmospheric absorption based on FSI, DMI Sci. Rep. 03-20, Dan. Meteorol. Inst., Copenhagen.
  • Marouf, E. A., G. L. Tyler, and P. A. Rosen (1986), Profiling Saturn's rings by radio occultation, Icarus, 68, 120166.
  • Meincke, M. D. (1999), Inversion methods for atmospheric profiling with GPS occultations, Sci. Rep. 99-11, Dan. Meteorol. Inst., Copenhagen.
  • Mortensen, M. D., and P. Høeg (1998), Inversion of GPS occultation measurements using Fresnel diffraction theory, Geophys. Res. Lett., 25, 24412444.
  • Nielsen, A. S., et al. (2003), Characterization of ACE+ LEO-LEO radio occultation measurements, ESTEC Contract 16743/02/NL/FF, Eur. Space Res. and Technol. Cent., Noordwijk, Netherlands.
  • Pavelyev, A. G. (1998), On the feasibility of radioholographic investigations of wave fields near the Earth's radio-shadow zone on the satellite-to-satellite path, J. Commun. Technol. Electron., 43(8), 875879.
  • Proakis, J. G., and D. G. Manolakis (1996), Digital Signal Processing Principles, Algorithms, and Applications, 3rd ed., Prentice-Hall, Upper Saddle River, N. J.
  • Rocken, C., et al. (1997), Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102, 29,84929,866.
  • Sirmans, D., and B. Bumgarner (1975), Numerical comparison of five mean frequency estimators, J. Appl. Meteorol., 14, 9911003.
  • Sokolovskiy, S. V. (2000), Inversion of radio occultation amplitude data, Radio Sci., 35(1), 97105.
  • Sokolovskiy, S. V. (2001), Modeling and inverting radio occultation signals in the moist troposphere, Radio Sci., 36(3), 441458.
  • Sokolovskiy, S. (2002), Open loop tracking and inverting GPS L1 radio occultation signals: Simulation study, in Atmosphere and Climate: Studies by Occultation Methods, edited by U. Foelsche, G. Kirchengast, and A. K. Steiner, pp. 3952, Springer, New York.
  • Sokolovskiy, S. (2003), Effect of superrefraction on inversions of radio occultation signals in the lower troposphere, Radio Sci., 38(3), 1058, doi:10.1029/2002RS002728.
  • Stephens, S. A., and J. B. Thomas (1995), Controlled-root formulation for digital phase-locked loops, IEEE Trans. Aerosp. Electron. Syst., 31, 7895.