SEARCH

SEARCH BY CITATION

References

  • Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song (2001), Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood, Mass.
  • Coifman, R., V. Rokhlin, and S. Wandzura (1993), The fast multipole method for the wave equation: A pedestrian prescription, IEEE Antennas Propag. Mag., 35, 712.
  • Ergül, Ö., and L. Gürel (2004a), Investigation of the inaccuracy of the MFIE discretized with the RWG basis functions, in IEEE Antennas and Propagation Society International Symposium 2004, vol. 3, pp. 33933396, IEEE Press, Piscataway, N. J.
  • Ergül, Ö., and L. Gürel (2004b), Improving the accuracy of the MFIE with the choice of basis functions, in IEEE Antennas and Propagation Society International Symposium 2004, vol. 3, pp. 33893392, IEEE Press, Piscataway, N. J.
  • Ergül, Ö., and L. Gürel (2005a), Improved testing of the magnetic-field integral equation, IEEE Microwave Wireless Components Lett., 15, 615617.
  • Ergül, Ö., and L. Gürel (2005b), Solid-angle factor in the magnetic-field integral equation, Microwave Opt. Technol. Lett., 45, 452456.
  • Ergül, Ö., and L. Gürel (2006), The use of curl-conforming basis functions for the magnetic-field integral equation, IEEE Trans. Antennas Propag., 54, 18171926.
  • Glisson, A. W., and D. R. Wilton (1980), Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces, IEEE Trans. Antennas Propag., 28, 593603.
  • Graglia, R. D. (1993), On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle, IEEE Trans. Antennas Propag., 41, 14481455.
  • Graglia, R. D., D. R. Wilton, and A. F. Peterson (1997), Higher order interpolatory vector bases for computational electromagnetics, IEEE Trans. Antennas Propag., 45, 329342.
  • Gürel, L., and Ö. Ergül (2003), Comparisons of FMM implementations employing different formulations and iterative solvers, in IEEE Antennas and Propagation Society International Symposium 2003, vol. 1, pp. 1922, IEEE Press, Piscataway, N. J.
  • Gürel, L., and Ö. Ergül (2005), Singularity of the magnetic-field integral equation and its extraction, IEEE Antennas Wireless Propag. Lett., 4, 229232.
  • Gürel, L., K. Sertel, and I. K. Şendur (1999), On the choice of basis functions to model surface electric current densities in computational electromagnetics, Radio Sci., 34, 13731387.
  • Harrington, R. F. (1968), Field Computation by Moment Methods, Macmillan, New York.
  • Hodges, R. E., and Y. Rahmat-Samii (1997), The evaluation of MFIE integrals with the use of vector triangle basis functions, Microwave Opt. Technol. Lett., 14, 914.
  • Lu, C.-C., and W. C. Chew (1997), Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects, IEEE Trans. Antennas Propag., 45, 14881493.
  • Mautz, J. R., and R. F. Harrington (1978), H-field, E-field, and combined field solutions for conducting bodies of revolution, Arch. Elektron. Uebertraeg., 32, 157164.
  • Morita, N., N. Kumagai, and J. R. Mautz (1990), Integral Equation Methods for Electromagnetics, Artech House, Norwood, Mass.
  • Mur, G., and A. T. de Hoop (1985), A finite-element method for computing three-dimensional electromagnetic fields in inhomogenous media, IEEE Trans. Magn., 21, 21882191.
  • Peterson, A. F. (2002), Solution of the MFIE using curl-conforming basis functions, in IEEE Antennas and Propagation Society International Symposium 2002, vol. 1, pp. 7073, IEEE Press, Piscataway, N. J.
  • Peterson, A. F., S. L. Ray, and R. Mittra (1998), Computational Methods for Electromagnetics, IEEE Press, Piscataway, N. J.
  • Poggio, A. J., and E. K. Miller (1973), Integral equation solutions of three-dimensional scattering problems, in Computer Techniques for Electromagnetics, edited by R. Mittra, chap. 4, pp. 159261, Elsevier, New York.
  • Rao, S. M., and D. R. Wilton (1990), E-field, H-field, and combined field solution for arbitrary shaped three-dimensional dielectric bodies, Electromagnetics, 10, 407421.
  • Rao, S. M., D. R. Wilton, and A. W. Glisson (1982), Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 30, 409418.
  • Rius, J. M., E. Úbeda, and J. Parrón (2001), On the testing of the magnetic field integral equation with RWG basis functions in method of moments, IEEE Trans. Antennas Propag., 49, 15501553.
  • Shanker, B., A. A. Ergin, K. Aygün, and E. Michielssen (2000), Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation, IEEE Trans. Antennas Propag., 48, 10641073.
  • Sheng, X.-Q., J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu (1998), Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies, IEEE Trans. Antennas Propag., 46, 17181726.
  • Song, J. M., C. C. Lu, W. C. Chew, and S. W. Lee (1998), Fast Illinois solver code (FISC), IEEE Antennas Propag. Mag., 40, 2734.
  • Trintinalia, L. C., and H. Ling (2001), First order triangular patch basis functions for electromagnetic scattering analysis, J. Electromagn. Waves Appl., 15, 15211537.
  • Wang, J., and J. P. Webb (1997), Hierarchal vector boundary elements and p-adaptation for 3-D electromagnetic scattering, IEEE Trans. Antennas Propag., 45, 18691879.
  • Ylä-Oijala, P., and M. Taskinen (2003), Calculation of CFIE impedance matrix elements with RWG and equation image × RWG functions, IEEE Trans. Antennas Propag., 51, 18371846.
  • Zhang, Y., T. J. Cui, W. C. Chew, and J.-S. Zhao (2003), Magnetic field integral equation at very low frequencies, IEEE Trans. Antennas Propag., 51, 18641871.