SEARCH

SEARCH BY CITATION

References

  • Baker, D. N. (1986), Statistical analysis in the study of solar wind magnetosphere coupling, in Solar Wind-Magnetosphere Coupling, edited by Y. Kamide, and J. A. Slavin, p. 17, Terra Sci., Tokyo.
  • Burton, R. K., R. L. McPherron, and C. T. Russell (1975), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204.
  • Detman, T. R., and D. Vassiliadis (1997), Review of techniques for magnetic storm forecasting, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, edited by B. T. Tsurutani et al., p. 253266, AGU, Washington, D. C.
  • Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47.
  • Fenrich, F. R., and J. G. Luhmann (1998), Geomagnetic response to magnetic clouds of different polarity, Geophys. Res. Lett., 25, 2999.
  • Freeman, J., A. Nagai, P. Reiff, W. Denig, S. G. Shea, M. Heinermann, F. Rich, and M. Hairston (1994), The use of neural networks to predict magnetospheric parameters for input to a magnetospheric forecast model, in Artificial Intelligence Applications in Solar Terrestrial Physics, edited by J. Joselyn, H. Lundstedt, and Trollinger, p. 167, Natl. Oceanic and Atmos. Admin., Boulder, Colo.
  • Gholipour, A., C. Lucas, and B. N. Araabi (2004), Black box modeling of magnetospheric dynamics to forecast geomagnetic activity, Space Weather, 2, S07001, doi:10.1029/2003SW000039.
  • Gholipour, A., C. Lucas, B. N. Araabi, and M. Shafiee (2005), Extracting the main patterns of natural time series for long term prediction, J. Atmos. Sol. Terr. Phys., 67, 595.
  • Gleisner, H., H. Lundstedt, and P. Wintoft (1996), Predicting geomagnetic storms from solar-wind data using time-delay neural networks, Ann. Geophys., 14, 679.
  • Hasegawa, H., M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro (2004), Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices, Nature, 430, 755.
  • Iyemori, T., H. Maeda, and T. Kamei (1979), Impulse response of geomagnetic indices to interplanetary magnetic fields, J. Geomagn. Geoelectr., 31, 1.
  • Joselyn, J. A. (1995), Geomagnetic activity forecasting: The state of the art, Rev. Geophys., 33, 383.
  • Kamide, Y., et al. (1998), Current understanding of magnetic storms: Storm-substorm relationships, J. Geophys. Res., 103, 17,705.
  • Kappenman, J. G., L. J. Zanetti, and W. A. Radasky (1997), Geomagnetic storm forecasts and the power industry, Eos Trans. AGU, 78, 37.
  • Klimas, A. J., D. Vassiliadis, and D. N. Baker (1997), Data-derived analogues of the magnetospheric dynamics, J. Geophys. Res., 102, 26,993.
  • Kugblenu, S., T. Satoshi, and O. Takashi (1999), Prediction of the geomagnetic storm associated Dst index using an artificial neural network algorithm, Earth Planets Space, 51, 307.
  • Lanzerotti, L. J. (1994), Impacts of solar-terrestrial processes on technological systems, in Solar-Terrestrial Energy Program, COSPAR Colloq. Ser., vol. 5, edited by D. N. Baker, V. O. Papitashvili, and M. J. Teague, p. 547, Elsevier, New York.
  • Lundstedt, H., and P. Wintoft (1994), Prediction of geomagnetic storms from solar wind data with the use of a neural network, Ann. Geophys., 12, 19.
  • McPherron, R. L. (1997), The role of substorms in the generation of magnetic storms, in Magnetic Storms, edited by B. T. Tsurutani et al., p. 131, AGU, Washington, D. C.
  • Munsami, V. (2000), Determination of the effects of substorms on the storm-time ring current using neural networks, J. Geophys. Res., 105, 27,833.
  • Nagatsuma, T. (2002), Geomagnetic storms, J. Commun. Res. Lab., 49(3), 139.
  • Nelles, O. (1999), Nonlinear system identification with local linear neuro-fuzzy models, Ph.D. thesis, Tech. Univ. Darmstadt, Darmstadt, Germany.
  • Nelles, O. (2001), Nonlinear System Identification, Springer, New York.
  • O'Brien, T. P., and R. L. McPherron (2000a), An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707.
  • O'Brien, T. P., and R. L. McPherron (2000b), Forecasting the ring current index Dst in real time, J. Atmos. Sol. Terr. Phys., 62, 1295.
  • Russell, C. T., R. L. McPherron, and R. K. Burton (1974), On the cause of geomagnetic storms, J. Geophys. Res., 79, 1105.
  • Sharifie, J., B. N. Araabi, and C. Lucas (2006), Multi-step prediction of Dst index using singular spectrum analysis and locally linear neurofuzzy modeling, Earth Planets Space, 58, 331.
  • Temerin, M., and X. Li (2002), A new model for the prediction of Dst on the basis of the solar wind, J. Geophys. Res., 107(A12), 1472, doi:10.1029/2001JA007532.
  • Vassiliadis, D., A. J. Klimas, D. N. Baker, and D. A. Roberts (1995), A description of the solar wind magnetosphere coupling based on nonlinear prediction filters, J. Geophys. Res., 100, 3495.
  • Vassiliadis, D., A. J. Klimas, and D. N. Baker (1999), Models of Dst geomagnetic activity and of its coupling to solar wind parameters, Phys. Chem. Earth, Part C, 24(1–3), 107.
  • Wang, C. B., J. K. Chao, and C. H. Lin (2003), Influence of the solar wind dynamic pressure on the decay and injection of the ring current, J. Geophys. Res., 108(A9), 1341, doi:10.1029/2003JA009851.
  • Wintoft, P. (1997), Prediction and classification of solar wind structures and geomagnetic activity using artificial neural networks: Space weather physics, Ph.D. thesis, Lund Univ., Lund, Sweden.
  • Wintoft, P., and H. Lundstedt (1998), Identification of geoeffective solar wind structures with self-organized maps, in AI Applications in Solar-Terrestrial Physics, edited by I. Sandahl, and E. Jonsson, Rep. ESA WPP-148, p. 151, Eur. Space Agency, Paris.
  • Wu, J. G., and H. Lundstedt (1996), Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks, Geophys. Res. Lett., 23, 319.