SEARCH

SEARCH BY CITATION

References

  • Alharthi, A., and J. Lange (1987), Soil water saturation: Dielectric determination, Water Resour. Res., 23, 591595.
  • Alumbaugh, D., P. Y. Chang, L. Paprocki, J. R. Brainard, R. J. Glass, and C. A. Rautman (2002), Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability, Water Resour. Res., 38(12), 1309, doi:10.1029/2001WR000754.
  • Annan, P. (2005), GPR methods for hydrogeological studies, in Hydrogeophysics, edited by Y. Rubin, and S. S. Hubbard, chap. 7, 532 pp., Springer, New York.
  • Ansoult, M., L. W. DeBacker, and M. Declrercq (1984), Statistical relationship between apparent dielectric constant and water content in porous media, J. Soil Sci. Soc. Am., 48, 4750.
  • Archie, G. E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am. Inst. Min. Mat., 146, 5462.
  • Bergmann, T., J. O. A. Robertsson, and K. Holliger (1998), Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media, Geophysics, 63(3), 856867.
  • Binley, A., P. Winship, R. Middleton, M. Pokar, and J. West (2001), High-resolution characterization of vadose zone dynamics using cross-borehole radar, Water Resour. Res., 37(11), 26392652.
  • Binley, A., G. Cassiani, R. Middleton, and P. Winship (2002), Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging, J. Hydrol., 267, 147159.
  • Birchak, J. R., L. G. Gardner, J. W. Hipp, and J. M. Victor (1974), High dielectric constant microwave probes for sensing soil moisture, Proc. IEEE, 62(1), 9398.
  • Bregman, N. D., R. C. Bailey, and C. H. Chapman (1989), Crosshole seismic tomography, Geophysics, 54, 200215.
  • Cai, J., and G. A. McMechan (1995), Ray-based synthesis of bistatic ground penetrating radar profiles, Geophysics, 60, 8796.
  • Casper, D. A., and K.-J. S. Kung (1996), Simulation of ground-penetrating radar waves in a 2-D soil model, Geophysics, 61, 10341049.
  • Chan, C. Y., and R. J. Knight (1999), Determining water content and saturation from dielectric measurements in layered materials, Water Resour. Res., 35(1), 8594.
  • Daniels, D. J. (1996), Surface Penetrating Radar, Inst. of Electr. Eng., London, U.K.,
  • Davis, J. L., and A. P. Annan (1989), Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophys. Prospect., 37, 531551.
  • Day-Lewis, F. D., and J. W. Lane Jr. (2004), Assessing the resolution-dependent utility of tomograms for geostatistics, Geophys. Res. Lett., 31, L07503, doi:10.1029/2004GL019617.
  • de Loor, G. P. (1964), Dielectric properties of heterogeneous mixtures, Appl. Sci. Res., B3, 479482.
  • Deutsch, C. V., and A. G. Journel (1992), GSLIB: Geostatistical Software Library and User's Guide, Oxford Univ. Press, New York.
  • Dobson, M. C., F. T. Ulaby, M. T. Hallikainen, and M. A. El-Rayes (1985), Microwave dielectric behavior of wet soils—Part II: Dielectric mixing models, IEEE Trans. Geosci. Remote Sens., 32(1), 3546.
  • Eppstein, M. J., and D. E. Dougherty (1998), Efficient three-dimensional data inversion: Soil characterization and moisture monitoring from cross-well ground-penetrating radar at a Vermont test site, Water Resour. Res., 34(8), 18891900.
  • Fares, A., P. Buss, M. Dalton, A. I. El-Kadi, and L. R. Parsons (2004), Dual field calibration of capacitance and neutron soil water sensors in a shrinking–swelling clay soil, Vadose Zone J., 3, 13901399.
  • Fayer, M. J., J. B. Sisson, W. A. Jordan, A. H. Lu, and P. R. Heller (1993), Subsurface injection of radioactive tracers: Field experiment for model validation testing, NUREG/CR-5996, U.S. Nucl. Regul. Comm., Washington, D. C.,
  • Fayer, M. J., R. E. Lewis, R. E. Engleman, A. L. Pearson, C. J. Murray, J. L. Smoot, R. R. Randall, W. H. Wegener, and A. H. Lu (1995), Re-evaluation of a subsurface injection experiment for testing of flow and transport models, Rep. PNL-10860, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Finsterle, S. (1999), iTOUGH2 user's guide, Rep. LBNL-40040, Lawrence Berkeley Natl. Lab., Berkeley, Calif.,
  • Freeman, E. J., R. Khaleel, and P. R. Heller (2001), A catalog of vadose zone hydraulic properties for the Hanford site, Rep. PNNL-13672, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Friedman, S. P. (1998), A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media, Water Resour. Res., 34(11), 29492961.
  • Gee, G. W., and A. L. Ward (2001), Vadose Zone Transport Field Study, Rep. PNNL-13982, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Gomez-Hernandez, J. J., A. Sahuquillo, and J. E. Capilla (1997), Stochastic simulation of transmissivity fields conditional to both tranmissivity and piezometric data—1, Theory, J. Hydrol., 203, 162174.
  • Hubbard, S. S., Y. Rubin, and E. Majer (1997), Ground-penetrating-radar assisted saturation and permeability estimation in bimodal systems, Water Resour. Res., 33, 971990.
  • Huisman, J. A., S. S. Hubbard, J. D. Redman, and A. P. Annan (2003), Measuring soil water content with ground penetrating radar: A review, Vadose Zone J., 2, 476491.
  • Hunt, A. G., and G. W. Gee (2002), Water-retention of fractal soil models using continuum percolation theory: Tests of Hanford site soils, Vadose Zone J., 1, 252260.
  • Hyndman, D. W., and S. M. Gorelick (1996), Estimating lithological and transport properties in three dimensions using seismic and tracer data, the Kesterson aquifer, Water Resour. Res., 32(9), 26592670.
  • Hyndman, D. W., J. M. Harris, and S. M. Gorelick (1994), Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30(7), 19651977.
  • Jacobsen, O. H., and P. Schjonning (1993), A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk soil density and texture, J. Hydrol., 151, 147157.
  • Jury, W. A., D. Russo, G. Sposito, and H. Elabd (1987), The spatial variability of water and solute transport properties in unsaturated soil: I. Analysis of property variation and spatial structure with statistical models, Hilgardia, 55, 132.
  • Kowalsky, M. B. (2003), Characterization approaches using ground-penetrating radar and hydrological measurements in variably saturated porous media, Ph.D. dissertation, 194 pp., Univ. of Calif., Berkeley.
  • Kowalsky, M. B., P. Dietrich, G. Teutsch, and Y. Rubin (2001), Forward modeling of ground-penetrating radar data using digitized outcrop images and multiple scenarios of water saturation, Water Resour. Res., 37(6), 16151626.
  • Kowalsky, M. B., S. A. Finsterle, and Y. Rubin (2004a), Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone, Adv. Water Resour., 27(6), 583599.
  • Kowalsky, M. B., Y. Rubin, and P. Dietrich (2004b), The use of ground-penetrating radar for characterizing sediments under transient flow conditions, in Aquifer Characterization, edited by J. S. Bridge, and D. W. Hyndman, SEPM Spec. Publ., 80, 107127.
  • Kunz, K. S., and R. J. Luebbers (1993), The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, Fla.,
  • Lambot, S., M. Antoine, I. van den Bosch, E. C. Slob, and M. Vanclooster (2004), Electromagnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties, Vadose Zone J., 3, 10721081.
  • Last, G. V., and T. G. Caldwell (2001), Core sampling in support of the Vadose Zone Transport Field Study, Rep. PNNL-13454, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Last, G. V., T. G. Caldwell, and A. T. Owen (2001), Sampling of boreholes WL-3A through -12 in support of the Vadose Zone Transport Field Study, Rep. PNNL-13631, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Lesmes, D. P., and S. P. Friedman (2005), Relationships between the electrical and hydrogeological properties of rocks and soils, in Hydrogeophysics, edited by Y. Rubin, and S. S. Hubbard, chap. 4, 532 pp., Springer, New York.
  • Levenberg, K. (1944), A method for the solution of certain problems in least squares, Q. Appl. Math., 2, 164168.
  • Majer, E. L., J. E. Peterson, K. H. Williams, T. M. Daley, and G. Gee (2000), High resolution of vadose zone transport using crosswell radar and seismic methods, Rep. PNNL-13791, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Marquardt, D. (1963), An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11, 431441.
  • Martinez, A., and A. P. Byrnes (2001), Modeling dielectric-constant values of geologic materials: An aid to ground-penetrating radar data collection and interpretation, Curr. Res. Earth Sci., Bull., 247, part 1, 116.
  • McLaughlin, D., and L. R. Townley (1996), A reassessment of the groundwater inverse problem, Water Resour. Res., 32(5), 11311161.
  • Moysey, S., and R. Knight (2004), Modeling the field-scale relationship between dielectric constant and water content in heterogeneous system, Water Resour. Res., 40, W03510, doi:10.1029/2003WR002589.
  • Moysey, S., K. Singha, and R. Knight (2005), Inferring field-scale rocks physics relationships through numerical simulation, Geophys. Res. Lett., 32, L08304, doi:10.1029/2004GL022152.
  • Or, D., and J. M. Wraith (1999), Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model, Water Resour. Res., 35(2), 371383.
  • Persson, M., B. Sivakumar, R. Berndtsson, O. H. Jacobsen, and P. Schjonning (2002), Predicting the dielectric constant-water content relationship using artificial neural networks, Soil Sci. Soc. Am. J., 66, 14241429.
  • Peterson, J. E. (2001), Pre-inversion corrections and analysis of radar tomographic data, J. Environ. Eng. Geophys., 6(1), 118.
  • Peterson, J. E., B. N. P. Paulsson, and T. V. McEvilly (1985), Applications of algebraic reconstruction techniques to crosshole seismic data, Geophysics, 50, 15661580.
  • Philip, J. R. (1991), Horizontal Redistribution with capillary hysteresis, Water Resour. Res., 27(7), 14591469.
  • Pruess, K., C. Oldenburg, and G. Moridis (1999), TOUGH2 user's guide, version 2.0, Rep. LBNL-43134, Lawrence Berkeley Natl. Lab., Berkeley, Calif.,
  • RamaRao, B. S., G. de Marsily, and M. G. Marietta (1995), Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. Theory and computational experiments, Water Resour. Res., 31(3), 475493.
  • Ramirez, A., W. Daily, A. Binley, and G. W. Gee (2001), Final report, FY 2001, 200 East Vadose test site Hanford, Washington, electrical resistance tomography, Rep. PNNL-13794, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Robinson, D. A., S. B. Jones, J. M. Wraith, D. Or, and S. P. Friedman (2003), Advances in dielectric and electrical conductivity measurement using time domain reflectometry: Simultaneous measurement of water content and bulk electrical conductivity in soils and porous media, Vadose Zone J., 2, 444475.
  • Robinson, D. A., M. G. Schaap, D. Or, and S. B. Jones (2005), On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials, Water Resour. Res., 41, W02007, doi:10.1029/2004WR003816.
  • Rockhold, M. L., C. J. Murray, and M. J. Fayer (1999), Conditional simulation and upscaling of soil properties, in Proceedings of the International Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, edited by M. T. van Genuchten, F. J. Leij, and L. Wu, pp. 13911402, Univ. of Calif., Riverside.
  • Roth, K. R., R. Schulin, H. Fluhler, and W. Attinger (1990), Calibration of time domain reflectometry for water content measurement using a composite dielectric approach, Water Resour. Res., 26, 22672273.
  • Rubin, Y. (2003), Applied Stochastic Hydrogeology, Oxford Univ. Press, New York.
  • Rucker, D. F., and T. P. A. Ferré (2004), Parameter estimation for soil hydraulic properties using zero-offset borehole radar: Analytical method, Soil Sci. Soc. Am. J., 68, 15601567.
  • Russo, D., and M. Bouton (1992), Statistical analysis of spatial variability in unsaturated flow parameters, Water Resour. Res., 28, 19111925.
  • Schaap, M. G., P. J. Shouse, and P. D. Meyer (2003), Laboratory measurements of the unsaturated hydraulic properties at the Vadose Zone Transport Field Study site, Rep. PNNL-14284, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Sethian, J. A., and A. M. Popovici (1999), 3-D travel time computation using the fast marching method, Geophysics, 64(2), 516523.
  • Sihvola, A. (1999), Electromagnetic Mixing Formulas and Applications, IEEE Electromagn. Waves Ser. 47, Inst. of Electr. Eng., London, U.K.,
  • Sisson, J. B., and A. H. Lu (1984), Field calibration of computer models for applications to buried liquid discharges: A status report, Tech. Rep. RHO-ST-46-P, Rockwell Hanford Oper., Richland, Wash.,
  • Smoot, J. L., and A. H. Lu (1994), Interpretation and modeling of a subsurface injection test, 200 East Area, Hanford, Washington, in Thirty-Third Hanford Symposium on Health and the Environment, In-Situ Remeditaion: Scientific Basis for Current and Future Technologies, edited by G. W. Gee, and N. R. Wing, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Smoot, J. L., and R. E. Williams (1996), A geostatistical methodology to assess the accuracy of unsaturated flow models, NUREG/CR-6411, U.S. Nucl. Regul. Comm., Washington, D. C.,
  • Stewart, R. R. (1991), Exploration Seismic Tomography: Fundamentals, Course Notes Ser., vol. 3, 140 pp., Soc. of Explor. Geophys., Tulsa, Okla.,
  • Topp, G. C., J. L. Davis, and A. P. Annan (1980), Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Resour. Res., 16(3), 574582.
  • van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • Ward, A. L., T. G. Caldwell, and G. W. Gee (2000), Vadose Zone Transport Field Study: Soil water content distributions by neutron moderation, Rep. PNNL-13795, Pac. Northwest Natl. Lab., Richland, Wash.,
  • Yao, T., P. J. Wierenga, A. R. Graham, and S. P. Neuman (2004), Neutron probe calibration in a vertically stratified vadose zone, Vadose Zone J., 3, 14001406.
  • Zhang, Z. F., A. L. Ward, and G. W. Gee (2004), A combined parameter scaling and inverse technique to upscale the unsaturated hydraulic parameters for heterogeneous soils, Water Resour. Res., 40, W08306, doi:10.1029/2003WR002925.