SEARCH

SEARCH BY CITATION

References

  • Aly, A. H., and R. C. Peralta (1999), Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm, Water Resour. Res., 35(8), 25232532.
  • Brooker, A. J., J. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. Trosset (1998), A rigorous framework for optimization of expensive functions by surrogates, Struc. Optimiz., 17, 113.
  • Clement, T. P. (1997), RT3D - A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater aquifers, Res. Rep. PNNL-SA-28967, Battelle Pac. Northwest Natl. Lab., Richland, Wash.,
  • Clement, T. P., Y. Sun, B. S. Hooker, and J. N. Petersen (1998), Modeling multi-species reactive transport in groundwater, Ground Water Monit. Rem., 18(2), 7992.
  • Clement, T. P., C. D. Johnson, Y. Sun, G. M. Klecka, and C. Bartlett (2000), Natural attenuation of chlorinated solvent compounds: Model development and field-scale application, J. Contam. Hydrol., 42, 113140.
  • Cooper, G., R. C. Peralta, and J. J. Kaluarachchi (1998), Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers, Adv. Water Resour., 21(5), 339350.
  • Coppola, E.Jr., F. Szidarovszky, M. Poulton, and E. Charles (2003), An artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions, J. Hydrol. Eng., 8(6), 348360.
  • Dibike, Y. B., and D. Solomatine (2001), River flow forecasting using artificial neural networks, J. Phys. Chem. Earth, Part B, Hydrol. Oceans Atmos., 26(1), 18.
  • Dougherty, D. E., and R. A. Marryott (1991), Optimal groundwater management: 1. Simulated annealing, Water Resour. Res., 27(10), 24932508.
  • Garrett, J. H.Jr., S. Ranjithan, and J. W. Eheart (1992), Application of neural networks to groundwater remediation, in Expert Systems in Civil Engineering—Knowledge Representation, Am. Soc. Civ. Eng. Monogr., edited by R. Allen, Am. Soc. of Civ. Eng., New York.
  • Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimizations and Machine Learning, Addison-Wesley, Boston, Mass.,
  • Gopalakrishnan, G., B. S. Minsker, and D. Goldberg (2003), Optimal sampling in a noisy genetic algorithm for risk-based remediation design, J. Hydroinformatics, 5, 1125.
  • Hagan, M. T., and M. Menhaj (1994), Training feedforward networks with the marquardt algorithm, IEEE Trans. Neural Networks, 5(6), 989993.
  • Holland, J. H. (1975), Adaptation in Natural and Artificial System, Univ. of Mich. Press, Ann Arbor.
  • Jin, Y., M. Olhofer, and B. Sendhoff (2002), A framework for evolutionary optimization with approximate fitness functions, IEEE Trans. Evol. Comput., 6(5), 481494.
  • Kratica, J. (1999), Improving performances of the genetic algorithm by caching, Comput. Artif. Intel., 18(3), 271283.
  • Lewis, H. R., and L. Denenberg (1997), Data Structures and Their Algorithms, Addison-Wesley, Boston, Mass.,
  • Maskey, S., Y. B. Dibike, A. Jonoski, and D. P. Solomatine (2000), Groundwater model approximation with artificial neural network for selecting optimal pumping strategy for plume removal, in AI Methods in Civil Engineering Applications, edited by O. Schleider, and A. Zijderveld, pp. 6780, Cottbus.
  • McDonald, M. G., and A. W. Harbaugh (1988), A modular three-dimensional finite-difference ground-water flow model, U. S. Geol. Surv. Tech. Water Resour. Invest., 06-A1.
  • McKinney, D. C., and M.-D. Lin (1994), Genetic algorithm solution of groundwater management models, Water Resour. Res., 30(6), 18971906.
  • Minsker, B. S., Y. Zhang, R. Greenwald, R. Peralta, C. Zheng, K. Harre, D. Becker, L. Yeh, K. Yager (2003), Final technical report for application of flow and transport optimization codes to groundwater pump and treat systems, Environ. Security Technol. Certification Program (ESTCP), Arlington, Va. (Available at http://www.frtr.gov/estcp/).
  • Peralta, R. C. (2002), Optimal pumping strategies for Umatilla chemical depot RDX and TNT plumes, draft final report, Navy Facil. Eng. Command, Syst. Simul./Optimiz., Utah.
  • Ranjithan, S., J. W. Eheart, and J. H. Garrett Jr. (1993), Neural network-based screening for groundwater reclamation under uncertainty, Water Resour. Res., 29(3), 563574.
  • Reed, P. M., B. S. Minsker, and D. E. Goldberg (2000), Designing a competent simple genetic algorithm for search and optimization, Water Resour. Res., 36(12), 37573761.
  • Ren, X., and B. S. Minsker (2005), Which groundwater remediation objective is better, a realistic one or a simple one? J. Water Resour. Plann. Manage., 131(5), 351361.
  • Ritzel, B. J., J. W. Eheart, and S. Ranjithan (1994), Using genetic algorithms to solve a multiple-objective groundwater pollution containment problem, Water Resour. Res., 30(5), 15891603.
  • Rizzo, D. M., and D. E. Dougherty (1996), Design optimization for multiple management period groundwater remediation, Water Resour. Res., 32(8), 25492561.
  • Rogers, L. L., and F. U. Dowla (1994), Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling, Water Resour. Res., 30(2), 457481.
  • Rogers, L. L., F. U. Dowla, and V. M. Johnson (1995), Optimal field-scale groundwater remediation using neural networks and the genetic algorithm, Environ. Sci. Technol., 29, 11451155.
  • Russel, S., and P. Norvig (1995), Artificial Intelligence—A Modern Approach, Prentice-Hall, Upper Saddle River, N. J.,
  • Smalley, J. B., B. S. Minsker, and D. E. Goldberg (2000), Risk-based in situ bioremediation design using genetic algorithm, Water Resour. Res., 36(10), 30433051.
  • U.S. Army Corps of Engineering (USACE) (1996), Final remedial design submittal, contaminated groundwater remediation, explosives washout lagoons, Umatilla depot activity, Hermiston, Oreg.,
  • U.S. Army Corps of Engineering (USACE) (2000), Explosives washout lagoons groundwater model revision (preliminary draft), Umatilla chemical depot, Hermiston, Oreg.,
  • Yong, J. H., and C. A. Shoemaker (1999), Comparison of optimization methods for ground-water bioremediation, J. Water Resour. Plann. Manage., 125(1), 5463.
  • Zhang, B. T. (1994), An incremental learning algorithm that optimizes network size and sample size in one trial, paper presented at International Conference on Neural Networks, Orlando, Fla.,
  • Zheng, C., and P. P. Wang (1996), Parameter structure identification using tabu search and simulated annealing, Adv. Water Resour., 19(4), 215224.
  • Zheng, C., and P. P. Wang (1999), MT3DMS: Documentation and user's guide, report, U. S. Army Corps of Eng. Waterw. Exp. Stn. (Available at http://hydro.geo.ua.edu).
  • Zheng, C., and P. P. Wang (2002), A field demonstration of the simulation-optimization approach for remediation system design, Ground Water, 40(3), 258265.