SEARCH

SEARCH BY CITATION

References

  • Alapati, S., and Z. J. Kabala (2000), Recovering the release history of a groundwater contaminant using a non-linear least-squares method, Hydrol. Processes, 14, 10031016.
  • Alizadeh, F., and D. Goldfarb (2003), Second-order cone programming, Math. Program., 95, 351.
  • Alpay, M. E., and M. H. Shor (2000), Model-based solution technique for the source localization problem, IEEE Trans. Control Syst. Technol., 8, 895904.
  • Aral, M. M., J. Guan, and M. L. Maslia (2001), Identification of contaminant source location and release history in aquifers, J. Hydrol. Eng., 6(3), 225234.
  • Atmadja, J., and A. C. Bagtzoglou (2001a), State of the art report on mathematical methods for groundwater pollution source identification, Environ. Forensics, 2, 205214.
  • Atmadja, J., and A. C. Bagtzoglou (2001b), Pollution source identification in heterogeneous porous media, Water Resour. Res., 37, 21132125.
  • Babuška, I., and J. T. Oden (2005), The reliability of computer predictions: Can they be trusted? TICAM Rep. 05-10, Univ. of Tex. at Austin, Austin.
  • Babuška, I., R. Tempone, and G. E. Zouraris (2002), Galerkin finite element approximations of stochastic elliptic differential equations, TICAM Rep. 02-38, Univ. of Tex. at Austin, Austin.
  • Bagtzoglou, A. C., and J. Atmadja (2003), Marching-jury backward beam equation and quasi-reversibility methods for hydrologic inversion: Application to contaminant plume spatial distribution recovery, Water Resour. Res., 39(2), 1038, doi:10.1029/2001WR001021.
  • Bagtzoglou, A. C., D. E. Dougherty, and A. F. B. Tompson (1992), Application of particle methods to reliable identification of groundwater pollution sources, Water Resour. Manage., 6, 1523.
  • Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York.
  • Ben-Tal, A., and A. Nemirovski (1995), Robust solutions to uncertain linear programs, Res. Rep. 6/95, Optimization Lab., Technion—The Isr. Inst. of Technol., Technion City.
  • Ben-Tal, A., and A. Nemirovski (1997), Stable truss topology design via semidefinite programming, SIAM J. Optim., 7, 9911016.
  • Ben-Tal, A., and A. Nemirovski (1998), Robust convex optimization, Math. Oper. Res., 23, 769805.
  • Ben-Tal, A., and A. Nemirovski (2000), Robust solutions of linear programming problems contaminated with uncertain data, Math. Program., 88, 411424.
  • Bertsimas, D., and M. Sim (2004), The price of robustness, Oper. Res., 52(1), 3553.
  • Bjorck, A. (1996), Numerical Methods for Least Squares Problems, Soc. for Ind. and Appl. Math., Philadelphia, Pa.,
  • Butera, I., and M. G. Tanda (2002), A geostatistical approach to recover the release history of groundwater pollution in 2D aquifers, paper presented at XXVII General Assembly, Eur. Geophys. Serv., Nice, France, 21 – 26 April .
  • Chandrasekaran, S., G. H. Golub, M. Gu, and A. H. Sayed (1996), Efficient algorithms for least square type problems with bounded uncertainties, Tech. Rep. SCCM-96-16, Stanford Univ., Stanford, Calif.,
  • Dagan, G. (1989), Flow and Transport in Porous Formations, Springer, New York.
  • De Fonseca, P., P. Sas, and H. Van Brussel (2001), Robust design and robust stability analysis of active noise control systems, J. Sound Vibration, 243(1), 2342.
  • El Ghaoui, L., and H. Lebret (1997), Robust solutions to least squares problems with uncertain data, SIAM J. Matrix Anal. Appl., 18, 10351064.
  • Fujisawa, K., M. Kojima, and K. Nakata (1997), Exploiting sparsity in primal-dual interior-point methods for semidefinite programming, Math Program, 79, 235253.
  • Goldfarb, D., and G. Iyengar (2003), Robust convex quadratically constrained programs, Math. Program., Ser. B, 97, 495515.
  • Golub, G. H., and C. F. Van Loan (1980), An analysis of the total least squares problem, SIAM J. Numer. Anal., 17, 883893.
  • Golub, G. H., and C. F. Van Loan (1989), Matrix Computations, Johns Hopkins Univ. Press, Baltimore, Md.,
  • Gorelick, S., M. B. Evans, and I. Remson (1983), Identifying sources of groundwater pollution: An optimization approach, Water Resour. Res., 19, 779790.
  • Hansen, P. C. (1994), Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6, 135.
  • Helton, J. C., and F. J. Davis (2003), Latin Hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliab. Eng. Syst. Saf., 81, 2369.
  • Isakov, V. (1990), Inverse Source Problems,Math. Surv. Monogr., vol. 34, Am. Math. Soc., Providence, R. I.,
  • Lawson, C. L., and R. J. Hanson (1995), Solving Least Squares Problems,Classics Appl. Math., vol. 15, Soc. of Ind. and Appl. Math., Philadelphia, Pa.,
  • Lobo, M. S., L. Vandenberghe, S. Boyd, and H. Lebret (1998), Applications of second-order cone programming, Linear Algebra Appl., 284, 193228.
  • Mahar, P. S., and B. Datta (2001), Optimal identification of groundwater pollution sources and parameter estimation, J. Water Res. Plann., 127(1), 2029.
  • Mares, C., M. I. Friswell, and J. E. Mottershead (2002), Model updating using robust estimation, Mech. Syst. Signal Proccess., 16, 169183.
  • Michalak, A. M., and P. K. Kitanidis (2004), Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling, Water Resour. Res., 40, W08302, doi:10.1029/2004WR003214.
  • Nesterov, Y., and A. Nemirovski (1994), Interior Point Polynomial Methods in Convex Programming: Theory and Applications, Soc. of Ind. and Appl. Math., Philadelphia, Pa.,
  • Nesterov, Y., and M. J. Todd (1997), Self-scaled barriers and interior-point methods for convex programming, Math. Oper. Res., 22, 142.
  • Neupauer, R. M., and J. L. Wilson (1999), Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant, Water Resour. Res., 35, 33893398.
  • Neupauer, R. M., and J. L. Wilson (2001), Adjoint-derived location travel time probabilities for a multi-dimensional groundwater system, Water Resour. Res., 37, 16571668.
  • Neupauer, R. M., and J. L. Wilson (2004), Numerical implementation of a backward probabilistic model of groundwater contamination, Ground Water, 42(2), 175189.
  • Neupauer, R. M., B. Borchers, and J. L. Wilson (2000), Comparison of inverse methods for reconstructing the release history of a groundwater contamination source, Water Resour. Res., 36, 24692475.
  • Renaut, R. A., and H. Guo (2005), Efficient algorithms for solution of regularized total least squares, SIAM J. Matrix Anal. Appl., 26, 457476.
  • Rousseeuw, P. J., and A. M. Leroy (1987), Robust Regression and Outlier Detection, John Wiley, Hoboken, N. J.,
  • Rubin, Y. (2003), Applied Stochastic Hydrogeology, Oxford Univ. Press, New York.
  • Schubert, K. E. (2003), A new look at robust estimation and identification, Ph.D. dissertation, Univ. of Calif., Santa Barbara.
  • Sheynin, O. B. (1994), C. F. Gauss and geodetic observations, Arch. Hist. Exact Sci., 46, 253283.
  • Sima, D., S. Van Huffel, and G. H. Golub (2003), Regularized total least squares based on quadratic eigenvalue problem solvers, Tech. Rep. SCCM-03-03, Sci. Comput. and Comput. Math. Program, Stanford Univ., Stanford, Calif.,
  • Skaggs, T. H., and Z. J. Kabala (1994), Recovering the release history of a groundwater contaminant, Water Resour. Res., 30, 7179.
  • Skaggs, T. H., and Z. J. Kabala (1995), Recovering the release history of a groundwater contaminant plume: Method of quasi-reversibility, Water Resour. Res., 31, 26692673.
  • Snodgrass, M. F., and P. K. Kitanidis (1997), A geostatistical approach to contaminant source identification, Water Resour. Res., 33, 537546.
  • Sturm, J. F. (1998), Using SeDuMI 1.02, a Matlab toolbox for optimization over symmetric cones, report, Dep. of Econ., Tilburg Univ., Tilburg, Netherlands.
  • Sun, N.-Z. (1994), Inverse Problems in Groundwater Modeling, Springer, New York.
  • Sun, N.-Z. (1996), Mathematical Modeling of Groundwater Pollution, Springer, New York.
  • Sun, N.-Z., and A. Sun (2002), Parameter identification of environmental systems, in Environmental Fluid Mechanics: Theories and Applications, edited by H. H. Shen et al., chap. 9, pp. 297337, Am. Soc. of Civ. Eng., Reston, Va.,
  • Sun, N.-Z., and A. Sun (2005), Inverse methods for parameter estimation, in Encyclopedia of Hydrological Sciences, vol. 4, edited by M. G. Anderson, and J. J. McDonnell, pp. 24152430, John Wiley, Hoboken, N. J.,
  • The MathWorks (2000), Matlab 6.0 reference guide, report, Natick, Mass.,
  • Tikhonov, A. N., and V. Y. Arsenin (1977), Solutions of Ill-posed Problems, Winston, Washington, D. C.,
  • Van Huffel, S. (Ed.) (1997), Recent Advances in Total Least Squares Techniques and Errors-in-Variables, 400 pp., Soc. for Ind. and Appl. Math., Philadelphia, Pa.,
  • Van Huffel, S., and P. Lemmerling (Eds.) (2002), Total Least Squares and Errors-in-Variables Modeling: Analysis, Algorithms and Applications, Springer, New York.
  • Van Huffel, S., and J. Vandewalle (1989), Analysis and properties of the generalized total least squares problem AXB, when some or all columns are subject to error, SIAM J. Matrix Anal. Appl., 19(3), 294315.
  • Van Huffel, S., and J. Vandewalle (1991), The Total Least Squares Problem: Computational Aspects and Analysis, Soc. for Ind. and Appl. Math., Philadelphia, Pa.,
  • Wagner, B. J. (1992), Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modeling, J. Hydrol., 135, 275300.
  • Walter, E., and H. Piet-Lahanier (1990), Estimation of parameter bounds from bounded-error data: A survey, Math. Comput. Simul., 32, 449468.
  • Wilson, J. L., and J. Liu (1994), Backward tracking to find the source of pollution, in Waste Management: From Risk to Remediation, vol. 1, edited by R. Bhada et al., pp. 181199, ECM, Albuquerque, N. M.,
  • Woodbury, A. D., and T. J. Ulrych (1996), Minimum relative entropy inversion: Theory and application to recovering the release history of groundwater contaminant, Water Resour. Res., 32, 26712681.
  • Woodbury, A. D., E. Sudicky, T. J. Ulrych, and R. Ludwig (1998), Three-dimensional plume source reconstruction using minimum relative entropy inversion, J. Contam. Hydrol., 32, 131158.
  • Zhang, D. (2002), Stochastic Methods for Flow in Porous Media: Coping With Uncertainties, Elsevier, New York.
  • Zheng, C., and P. P. Wang (1999), MT3DMS, a modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems, documentation and user's guide, Contract Rep. SERDP-99-1, 202 pp., Res. and Dev. Cent., U.S. Army Corps of Eng., Vicksburg, Miss.,