SEARCH

SEARCH BY CITATION

References

  • Abbott, M. B., J. C. Bathurst, J. A. Cunje, P. E. O'Connell, and J. Rasmussen (1986), An introduction to the European hydrological system–System hydrologique Europeen, ‘SHE', 1: History and philosophy of a physically-based, distributed modeling system, J. Hydrol., 87, 4559.
  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a), Artificial neural networks in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5(2), 115123.
  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b), Artificial neural networks in hydrology. II: Hydrologic applications, J. Hydrol. Eng., 5(2), 124137.
  • Baker, J. M., and T. J. Griffis (2005), Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques, Agric. For. Meteorol., 128, 163177.
  • Blaney, H. F., and W. D. Criddle (1950), Determining water requirements in irrigated areas from climatological irrigation data, Tech. Pap. 96, 48 pp., U.S. Dep. of Agric., Nat. Resour. Conserv. Serv., Washington, D. C.,
  • Bowden, G. J., G. C. Dandy, and H. R. Maier (2005), Input determination for neural network models in water resources applications. Part 1: Background and methodology, J. Hydrol., 301, 7592.
  • Brown, M., and C. Harris (1994), Neurofuzzy Adaptive Modeling and Control, Prentice-Hall, Upper Saddle River, N. J.,
  • Brutsaert, W. H. (1982), Evaporation Into the Atmosphere, Springer, New York.
  • Cai, S., H. Toral, J. Qiu, and J. S. Archer (1994), Neural network based objective flow regime identification in air-water two phase flow, Can. J. Chem. Eng., 72, 440445.
  • Demuth, H., and M. Beale (2001), Neural Network Toolbox User's Guide: Matlab User's Guide, The Math Works Inc., Natick, Mass.,
  • Drexler, J. Z., R. L. Snyder, D. Spano, and K. T. Paw (2004), A review of models and micrometeorological methods used to estimate wetland evapotranspiration, Hydrol. Processes, 18, 20712101.
  • Eltahir, E. A. B. (1998), A soil moisture–rainfall feedback mechanism: 1. Theory and observations, Water Resour. Res., 34(4), 765776.
  • Entekhabi, D., I. Rodriguez-Iturbe, and F. Castelli (1996), Mutual interaction of soil moisture state and atmospheric processes, J. Hydrol., 184, 317.
  • Hargreaves, G. H., and Z. A. Samani (1982), Estimating potential evapotranspiration, J. Irrig. Drain. Eng., 108(3), 225230.
  • Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, 2nd ed., Macmillan, New York.
  • Holdridge, L. R. (1962), The determination of atmospheric water movements, Ecology, 43, 19.
  • Hong, Y., K. Hsu, S. Sorooshian, and X. Gao (2005), Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch-based rainfall estimation at small scales, Water Resour. Res., 41, W03008, doi:10.1029/2004WR003142.
  • Hsu, K., H. V. Gupta, X. Gao, S. Sorooshian, and B. Imam (2002), Self-organizing linear output (SOLO): An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795.
  • Jackson, R. D., S. B. Idso, and R. J. Reginato (1976), Calculation of evaporation rates during the transition from energy-limiting to soil-limiting phases using albedo data, Water Resour. Res., 12(1), 2326.
  • Jarvis, P. G., and K. G. McNaughton (1986), Stomatal control of transpiration: Scaling up from leaf to region, Adv. Ecol. Res., 15, 149.
  • Jensen, K. H. (1981), Unsaturated flow and evapotranspiration modeling as a component of the European hydrologic system (SHE), in Modeling Components of Hydrologic Cycle, edited by V. P. Singh, pp. 235252, Water Resour. Publ., Highlands Ranch, Colo.,
  • Karunanithi, N., W. J. Grenney, D. Whitley, and K. Bovee (1994), Neural networks for river flow prediction, J. Comput. Civ. Eng., 8(2), 201220.
  • Kohonen, T. (1989), Self-Organization and Associative Memory, Springer, New York.
  • Kumar, M., N. S. Raghuwanshi, R. Singh, W. W. Wallender, and W. O. Pruitt (2002), Estimating evapotranspiration using artificial neural network, J. Irrig. Drain. Eng., 128(4), 224233.
  • Lakshmi, V., and J. Susskind (2001), Utilization of satellite data in land-surface hydrology: Sensitivity and assimilation, Hydrol. Processes, 15(5), 877892.
  • Leuning, R., and M. J. Judd (1996), The relative merits of open- and closed-path analysers for measurements of eddy fluxes, Global Change Biol., 2, 241253.
  • Linacre, E. T. (1977), A simple formula for estimating evaporation rates in various climates, using temperature data alone, Agric. Meteorol., 18, 409424.
  • MacKay, D. J. C. (1992), Bayesian methods for adaptive models, Ph.D. thesis, Calif. Inst. of Technol., Pasadena, Calif.,
  • Maier, H., and G. Dandy (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Modell. Software, 15(1), 101124.
  • Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfall runoff models, Hydrol. Sci. J., 41(3), 399417.
  • Monteith, J. L. (1965), Evaporation and environment, in The State and Movement of Water in Living Organisms, edited by G. E. Fogg, Symp. Soc. Exp. Biol., 19, 205234.
  • Penman, H. L. (1948), Natural evaporation from open water, bare soil and grass, Proc. R. Soc. London, 193, 120146.
  • Priestley, C. H. B., and R. J. Taylor (1972), On the assessment of surface heat flux and evaporation using large scale parameters, Mon. Weather Rev., 100, 8192.
  • Sajikumar, N., and B. S. Thandaveswara (1999), A non-linear rainfall-runoff model using an artificial neural network, J. Hydrol., 216, 3255.
  • Salvucci, G. D. (1997), Soil and moisture independent estimation of stage-two evaporation from potential evaporation and albedo or surface temperature, Water Resour. Res., 33(1), 111122.
  • Saxton, K. E. (1981), Mathematical modeling of evapotranspiration on agricultural watersheds, in Modeling Components of Hydrologic Cycle, edited by V. P. Singh, pp. 183204, Water Resour. Publ., Highlands Ranch, Colo.,
  • Schotanus, P., F. T. M. Niewstadt, and H. A. R. De Bruin (1983), Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes, Boundary Layer Meteorol., 26, 8195.
  • Singh, V. P. (1989), Hydrologic Systems: Watershed Modeling, vol. 2, Prentice-Hall, Upper Saddle River, N. J.,
  • Stephens, J. C., and E. H. Stewart (1963), A comparison of procedures for computing evaporation and evapotranspiration, IAHS Publ., 62, 123133.
  • Sudheer, K. P., A. K. Gosain, D. M. Rangan, and S. M. Saheb (2002), Modelling evaporation using an artificial neural network algorithm, Hydrol. Processes, 16, 31893202.
  • Sudheer, K. P., A. K. Gosain, and K. P. Ramasastri (2003), Estimating actual evapotranspiration from limited climatic data using neural computing technique, J. Irrig. Drain. Eng., 129(3), 214218.
  • Temesgen, B., S. Eching, B. Davidoff, and K. Frame (2005), Comparison of some reference evapotranspiration equations for California, J. Irrig. Drain. Eng., 131(1), 7384.
  • Thornthwaite, C. W. (1948), An approach toward a rational classification of climate, Geogr. Rev., 33, 5594.
  • Tokar, A. S., and M. Markus (2000), Precipitation runoff modeling using artificial neural network and conceptual models, J. Hydrol. Eng., 5(2), 151161.
  • Trajkovic, S., B. Todorovic, and M. Stankovic (2003), Forecasting of reference evapotranspiration by artificial neural networks, J. Irrig. Drain. Eng., 129(6), 454457.
  • Twine, T. E., W. P. Kustas, J. M. Norman, D. R. Cook, P. R. Houser, T. P. Meyers, J. H. Prueger, P. J. Starks, and M. L. Wesely (2000), Correcting eddy-covariance flux underestimates over a grassland, Agric. For. Meteorol., 103, 279300.
  • Wang, J., G. D. Salvucci, and R. L. Bras (2004), An extremum principle of evaporation, Water Resour. Res., 40, W09303, doi:10.1029/2004WR003087.
  • Webb, E. K., G. I. Pearman, and R. Leuning (1980), Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. R. Meteorol. Soc., 106, 85100.
  • Zhang, B., and S. Govindaraju (2000), Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resour. Res., 36(3), 753762.