SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1974), A new look at the statistical model identification, IEEE Trans. Autom. Control, 19, 716723.
  • Bertino, L., G. Evensen, and H. Vackernagel (2003), Sequential data assimilation techniques in oceanography, Int. Stat. Rev., 71, 223242.
  • Beven, K. J., R. J. Romanowicz, F. Pappenberger, P. C. Young, and M. Werner (2006), The uncertainty cascade in flood forecasting, in Innovation, Advances and Implementation of Flood Forecasting Technology: Proceedings of the ACTIF Meeting, Tromsø, edited by P. Balbanis, D. Lambroso, and P. Samuels, p. 33, HR Wallingford, Wallingford, U. K.
  • Box, G. E. P., and D. R. Cox (1964), An analysis of transformations, J. R. Stat. Soc., Ser. B, 26, 211252.
  • Evensen, G. (1994), Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10,14310,162.
  • Gilchrist, W. (1978), Statistical Forecasting, John Wiley, Hoboken, N. J.
  • Hall, P., J. W. Kay, and D. M. Titterington (1990), Asymptotically optimal difference-based estimation of variance in nonparametric regression, Biometrika, 77, 521528.
  • Holder, L. (1985), Multiple Regression in Hydrology, Inst. of Hydrol., Wallingford, U. K.
  • Kalman, R. (1960), New approach to linear filtering and prediction problems, J. Basic Eng., 82-D, 3545.
  • Khan, M. H. (1993), Muskingum flood routing model for multiple tributaries, Water Resour. Res., 29, 10571062.
  • Krzysztofowicz, R. (1999), Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35, 27392750.
  • Krzysztofowicz, R. (2002a), Bayesian system for probabilistic river stage forecasting, J. Hydrol., 268, 1640.
  • Krzysztofowicz, R. (2002b), Probabilistic floods forecast: Bounds and approximations, J. Hydrol., 268, 4155.
  • Lees, M. J., P. C. Young, K. J. Beven, S. Ferguson, and J. Burns (1994), An adaptive flood warning system for the river Nith at Dumfries, in River Flood Hydraulics, edited by W. R. White, and J. Watts, pp., 6577, John Wiley, Hoboken, N. J.
  • Madsen, H., and C. Skotner (2005), Adaptive state updating in real-time river flow forecasting—A combined filtering and error forecasting procedure, J. Hydrol., 308, 302312.
  • Madsen, H., D. Rosbjerg, J. Damgård, and F. S. Hansen (2003), Data assimilation in the MIKE 11 flood forecasting system using Kalman filtering, in Water Resources Systems—Hydrological Risk, Management and Development, Proceedings of Symposium HS02b Held During IUGG2003 at Sapporo, July 2003, IAHS Publ., 281, 7581.
  • Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian (2005a), Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604.
  • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005b), Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28, 135147.
  • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models, I, A discussion of principles, J. Hydrol., 10, 282290.
  • Nelder, J. A., and R. Mead (1965), A simplex method for function minimization, Comput. J., 1, 308313.
  • Pappenberger, F., K. J. Beven, N. M. Hunter, P. D. Bates, B. Gouweleeuw, J. Thielen, and A. de Roo (2005), Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS), Hydrol. Earth Syst. Sci., 9, 381393.
  • Park, J., J. Obeysekera, and R. VanZee (2005), Prediction boundaries and forecasting of nonlinear hydrologic stage data, J. Hydrol., 312, 7994.
  • Porporato, A., and L. Ridolfi (2001), Multivariate nonlinear prediction of river flows, J. Hydrol., 248, 109122.
  • Refsgaard, J. C. (1997), Validation and intercomparison of different updating procedures for real-time forecasting, Nord. Hydrol., 28(2), 6584.
  • Romanowicz, R. J., and K. J. Beven (1998), Dynamic real-time prediction of flood inundation probabilities, Hydrol. Sci. J., 43(2), 181196.
  • Romanowicz, R. J., P. C. Young, and K. J. Beven (2004a), Assessing uncertainty in assessing flood risk, in Proceedings of First International Conference on Flood Risk Assessment, Bath, U. K., 2004, pp. 127138, Inst. of Math. and Its Appl., London.
  • Romanowicz, R. J., P. C. Young, and K. J. Beven (2004b), Data assimilation in the identification of flood inundation models: Derivation of on-line multi-step ahead predictions of flows, in BHS International Conference: Hydrology, Science and Practice for the 21st century, edited by B. Webb et al., pp. 348353, Br. Hydrol. Soc., London.
  • Romanowicz, R. J., P. C. Young, and K. J. Beven (2006), Uncertainty analysis of a sequential model for flood forecasting, in Prediction in Ungauged Basins: Promises and Progress, edited by M. Sivapalan, IAHS Publ., in press.
  • Schweppe, F. C. (1973), Uncertain Dynamic Systems, Prentice-Hall, Upper Saddle River, N. J.
  • Sørensen, J. V. T., H. Madsen, and H. Madsen (2004), Efficient sequential techniques for the assimilation of tide gauge data in three dimensional modeling of the North Sea and Baltic Sea system, J. Geophys. Res., 109, C03017, doi:10.1029/2003JC002144.
  • Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16, 430442.
  • Thirumalaiah, K., and M. C. Deo (2000), Hydrological forecasting using neural networks, J. Hydrol. Eng., 5(2), 180189.
  • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059.
  • Young, P. C. (1984), Recursive Estimation and Time Series Analysis, ,Springer, New York.
  • Young, P. C. (1989), Recursive estimation, forecasting and adaptive control, in Control and Dynamic Systems, edited by C. T. Leondes, pp. 119166, Elsevier, New York.
  • Young, P. C. (1993), Time variable and state dependent modelling of nonstationary and nonlinear time series, in Developments in Time Series Analysis, , edited by T. Subba Rao, pp. 374413, CRC Press, Boca Raton, Fla.
  • Young, P. C. (2000), Stochastic, dynamic modelling and signal processing: Time variable and state dependent parameter estimation, in Nonstationary and Nonlinear Signal Processing, edited by W. J. Fitzegarald et al., pp. 74114, Cambridge Univ. Press, New York.
  • Young, P. C. (2001), The identification and estimation of nonlinear stochastic systems, in Nonlinear Dynamics and Statistics, edited by A. I. Mees, pp. 127166, Springer, New York.
  • Young, P. C. (2002a), Advances in real-time flood forecasting, Philos. Trans. R. Soc. London, 360, 14331450.
  • Young, P. C. (2002b), Advances in real-time forecasting, Rep. TR/176,38 pp., Cent. for Res. on Environ. Syst. and Stat., Lancaster Univ., Lancaster, U. K.
  • Young, P. C. (2003), Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale, Hydrol. Processes, 17, 21952217.
  • Young, P. C. (2006), Transfer function models, in Encyclopedia of Hydrological Sciences, vol. 3, part II, Rainfall-Runoff Modeling, edited by M. Anderson, pp. 19852000, John Wiley, Hoboken, N. J.
  • Young, P. C., and K. J. Beven (1994), Data-based mechanistic modelling of rainfall-flow nonlinearity, Environmetrics, 5, 335363.
  • Young, P. C., and C. M. Tomlin (2000), Data-based mechanistic modelling and adaptive flow forecasting, in Flood Forecasting: What Does Current Research Offer the Practitioner?, edited by P. Walshe, and M. Lees, Occas. Pap. 12, pp. 2640, Br. Hydrol. Soc., London.