SEARCH

SEARCH BY CITATION

References

  • Abebe, A. J., and D. P. Solomatine (1998), Application of global optimization to the design of pipe networks, in Proceedings of the International Conference on Hydroinformatics, pp. 989996, A. A. Balkema, Brookfield, Vt.,
  • Alperovits, E., and U. Shamir (1977), Design of optimal water distribution systems, Water Resour. Res., 13(6), 885900.
  • Bhave, P. R., and V. V. Sonak (1992), A critical study of the linear programming gradient method of optimal design of water supply networks, Water Resour. Res., 28(6), 15771584.
  • Charbonneau, P., and B. Knapp (1996), A user's guide to PIKAIA 1.0, Tech. Note 418+IA, Natl. Cent. for Atmos. Res., Boulder, Colo.,
  • Cunha, M. C., and J. Sousa (1999), Water distribution network design optimization: Simulated annealing approach, J. Water Resour. Plann. Manage., 125(4), 215221.
  • Dandy, G. C., A. R. Simpson, and L. J. Murphy (1996), An improved genetic algorithm for pipe network optimization, Water Resour. Res., 32(2), 449458.
  • Díaz, A., F. Glover, H. M. Ghaziri, J. L. González, M. Laguna, P. Moscato, and F. T. Tseng (1996), Optimización Heurística y Redes Neuronales, Paraninfo, Madrid.
  • Dorigo, M., V. Maniezzo, and A. Colorni (1996), Ant system: Optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybern., Part B, 26(1), 2941.
  • Eiger, G., U. Shamir, and A. Ben-Tal (1994), Optimal design of water distribution networks, Water Resour. Res., 30(9), 26372646.
  • Eusuff, M. M., and K. E. Lansey (2003), Optimization of water distribution network design using the shuffled frog leaping algorithm, J. Water Resour. Plann. Manage., 129(3), 210225.
  • Fujiwara, O., and D. B. Khang (1990), A two-phase decomposition method for optimal design of looped water distribution networks, Water Resour. Res., 26(4), 539549.
  • Fujiwara, O., and D. B. Khang (1991), Correction to “A two-phase decomposition method for optimal design of looped water distribution networks,” Water Resour, Res., 27(5), 985986.
  • Fujiwara, O., B. Jenchaimahakoon, and N. C. P. Edirisinghe (1987), A modified linear programming gradient method for optimal design of looped water distribution networks, Water Resour. Res., 23(6), 977982.
  • Geem, Z. W., J. H. Kim, and G. V. Loganathan (2001), A new heuristic optimisation algorithm: Harmony search, Simulation, 76(2), 6068.
  • Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Boston, Mass.,
  • Goulter, I. C., B. M. Lussier, and D. R. Morgan (1986), Implications of head loss path choice in the optimization of water distribution networks, Water Resour. Res., 22(5), 819822.
  • Gupta, I., J. K. Bassin, A. Gupta, and P. Khanna (1993), Optimization of water distribution system, Environ. Modell. Software, 8, 101113.
  • Gupta, I., A. Gupta, and P. Khanna (1999), Genetic algorithm for optimization of water distribution systems, Environ. Modell. Software, 14, 437446.
  • Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, Mass.,
  • Kessler, A., and U. Shamir (1989), Analysis of the linear programming gradient method for optimal design of water supply networks, Water Resour. Res., 25(7), 14691480.
  • Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983), Optimization by simulated annealing, Science, 220(4598), 671680.
  • Lansey, K. E., and L. W. Mays (1989), Optimal design of water distribution systems, J. Hydraul. Eng., 115(10), 14011418.
  • Loganathan, G. V., H. D. Sherali, and M. P. Shah (1990), A two-phase network design heuristic for minimum cost water distribution system under a reliability constraint, Eng. Optim., 15(4), 311336.
  • Loganathan, G. V., J. J. Greene, and T. J. Ahn (1995), Design heuristic for globally minimum cost water-distribution systems, J. Water Resour. Plann. Manage., 121(2), 182192.
  • Maier, H. R., A. R. Simpson, A. C. Zecchin, W. K. Foong, K. Y. Phang, H. Y. Seah, and C. L. Tan (2003), Ant colony optimization for design of water distribution systems, J. Water Resour. Plann. Manage., 129(3), 200209.
  • Matías, A. (2003), Diseño de redes de distribución de agua contemplando la fiabilidad mediante algoritmos genéticos, Ph.D. thesis, Politech. Univ. of Valencia, Valencia, Spain.
  • Mays, L. W. (Ed.) (2000), Water Distribution System Handbook, McGraw-Hill, New York.
  • Michalewicz, Z. (1992), Genetic Algorithms + Data Structures = Evolutionary Programs, Springer, New York.
  • Montesinos, P., A. García, and J. L. Ayuso (1999), Water distribution network optimisation using modified genetic algorithm, Water Resour. Res., 35(11), 34673473.
  • Morgan, G. R., and I. C. Goulter (1985), Optimal urban water distribution design, Water Resour. Res., 21(5), 642652.
  • Park, S., and K. Miller (1988), Random number generators: Good ones are hard to find, Commun. ACM, 31, 11921201.
  • Quindry, G. E., E. D. Brill, J. C. Liebman, and A. R. Robinson (1979), Comment on “Design of optimal water distribution system” by E. Alperovits and U. Shamir, Water Resour. Res., 15(6), 16511654.
  • Quindry, G. E., E. D. Brill, and J. C. Liebman (1981), Optimization of looped water distribution systems, J. Environ. Eng. Div. Am. Soc. Civ. Eng., 107(4), 665679.
  • Rossman, L. A. (2000), EPANET 2 users manual, Rep. EPA/600/R-00/057, U.S. Environ. Prot. Agency, Cincinnati, Ohio.
  • Savic, D. A., and G. A. Walters (1997), Genetic algorithms for least-cost design of water distribution networks, J. Water Resour. Plann. Manage., 123(2), 6776.
  • Sherali, H. D., and E. P. Smith (1997), A global optimization approach to a water distribution network design problem, J. Global Optim., 11, 107132.
  • Sherali, H. D., R. Totlani, and G. V. Loganathan (1998), Enhanced lower bounds for the global optimization of water distribution networks, Water Resour. Res., 34(7), 18311841.
  • Sherali, H. D., S. Subramanian, and G. V. Loganathan (2001), Effective relaxations and partitioning schemes for solving water distribution networks design problems to global optimality, J. Global Optim., 19, 126.
  • Solomatine, D. P. (1999), Random search methods in model calibration and pipe network design, in Water Industry Systems: Modelling and Optimization Applications, vol. 2, edited by D. Savic, and G. Walters, pp. 317332, Res. Stud., Baldock, U. K.,
  • Sonak, V. V., and P. R. Bhave (1993), Global optimum tree solution for single-source looped water distribution networks subjected to a single loading pattern, Water Resour. Res., 29(7), 24372443.
  • Simpson, A. R., H. R. Maier, W. K. Foong, K. Y. Phang, H. Y. Seah, and C. L. Tan (2001), Selection of parameters for ant colony optimisation applied to the optimal design of water distribution systems, paper presented at the International Congress on Modelling and Simulation, Modell. and Simul. Soc. of Aust. and N.Z., Inc., Canberra.
  • Todini, E. (2000), Looped water distribution networks design using a resilience index based heuristic approach, Urban Water, 2(3), 115122.
  • Vairavamoorthy, K., and M. Ali (2000), Optimal design of water distribution systems using genetic algorithm, Comput. Aided Civ. Infrastruct. Eng., 15(2), 374382.
  • Varma, K. V. K., S. Narasimhan, and S. M. Bhallamudi (1997), Optimal design of water distribution systems using NLP method, J. Environ. Eng., 123(4), 381388.
  • Walski, T. M., D. V. Chase, and D. A. Savic (Eds.) (2003), Advanced Water Distribution Modeling and Management, Haestad, Waterbury, Conn.,
  • Walters, G. A., D. Halhal, D. A. Savic, and D. Ouzar (1999), Improved design of anytown distribution network using structured messy genetic algorithms, Urban Water, 1(1), 2338.