SEARCH

SEARCH BY CITATION

References

  • Benson, M. A. (1962), Evaluation methods for evaluating the occurrence of floods, U.S. Geol. Surv. Water Supply Pap, 1543–A.
  • Bobée, B., and P. Rasmussen (1995), Recent advances in flood frequency analysis, U.S. Natl. Rep. Int. Union Geod. Geophys. 1991–1994, Rev. Geophys., 33, 11111116.
  • Burn, D. H. (1990), Evaluation of regional flood frequency analysis with a region of influence approach, Water Resour. Res., 26(10), 22572265.
  • Cavadias, G. S. (1989), The Canonical correlation approach to regional flood estimation: Regionalisation in hydrology, in Proceedings of the Ljubljana Symposium, ,IAHS Publ., ,191, 171178.
  • Chokmani, K., and T. B. M. J. Ouarda (2004), Physiographical space-based kriging for regional flood frequency estimation at ungauged sites, Water Resour. Res., 40, W12514, doi:10.1029/2003WR002983.
  • Coles, S. G., and E. A. Powell (1996), Bayesian methods in extreme value modelling. A review and new developments, Int. Stat. Rev., 43, 148.
  • Coles, S. G., and J. A. Tawn (1996), A Bayesian analysis of extreme rainfall data, Appl. Stat., 45, 463478.
  • Crowder, M. (1992), Bayesian priors based on a parameter transformation using the distribution function, Ann. Inst. Stat. Math., 44, 405416.
  • Dalrymple, T. (1960), Flood frequency analysis, U.S. Geol. Surv. Water Supply Pap, 1543–A.
  • Fill, H. D., and J. R. Stedinger (1998), Using regional regression within index flood procedures and an empirical Bayes estimator, J. Hydrol., 210, 128145.
  • Geweke, J. (1992), Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, in Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting, edited by J.-M. Bernardo et al., pp. 169193, Clarendon Press, Oxford, U. K.
  • Gilks, W. R., S. Richardson, and D. Spiegelhalter (1996), Markov Chain Monte Carlo in Practice, CRC Press, Boca Raton, Fla.
  • Girard, C., B. M. J. T. Ouarda. and B. Bobée (2000), A CCA classification approach for the identification of neighborhoods (in French), Res. Rep. R-576, Cent. Eau, Terre and Environ., Inst. Natl. de la Rech. Sci., Sainte-Foy, Quebec, Canada.
  • Greiss, N. P., and E. F. Wood (1981), Regional flood frequency analysis and network design, Water Resour. Res., 17(4), 11671177.
  • Groupe de recherche en hydrologie statistique (GREHYS) (1996a), Presentation and review of some methods for regional flood frequency analysis, J. Hydrol., 186, 6384.
  • Groupe de recherche en hydrologie statistique (GREHYS) (1996b), Inter-comparison of regional flood frequency procedures for Canadian rivers, J. Hydrol., 186, 85103.
  • Hosking, J. R. M., and J. R. Wallis (1993), Some statistics useful in regional frequency analyses, Water Resour. Res., 29(2), 271281.
  • Hosking, J. R. M., J. R. Wallis, and E. F. Wood (1985), An appraisal of regional flood frequency procedure in the U. K. flood studies report, Hydrol. Sci. J., 30(1), 85109.
  • Huerta, G.. and B. Sansó (2005), Time-varying models for extreme values, paper presented at 4th Conference on Extreme Value Analysis: Probabilistic and Statistical Models and their Applications, Nord. Sch. of Public Health, Gothenburg, Sweden, 15 – 19 Aug.
  • Interagency Advisory Committee on Water Data, (1982). Guidelines for determining flood flow frequency, Bull. 17B, 28 pp., Hydrol. Subcomm., Washington D.C.
  • Jaynes, E. T. (1985), Bayesian methods: General background, in the Proceedings Volume, Maximum Entropy and Bayesian Methods in Applied Statistics of the Fourth Annual Workshop on Bayesian/Maximum Entropy Methods. Calgary, August 1984, , edited by J.H. Justice, pp. 125, Cambridge Univ. Press, New York.
  • Koenker, R., and G. S. Bassett (1978), Regression quantiles, Econometrica, 46, 3350.
  • Kuczera, G. (1982), Combining site-specific and regional information: An empirical Bayes approach, Water Resour. Res., 18(2), 306314.
  • Lettenmaier, D. P., and K. W. Potter (1995), Testing flood frequency estimation methods using a regional flood generation model, Water Resour. Res., 21(12), 19031914.
  • Lettenmaier, D. P., J. R. Wallis, and E. F. Wood (1987), Effect of regional heterogeneity on flood frequency estimation, Water Resour. Res., 23(2), 313323.
  • Madsen, H., and D. Rojsberg (1997), Generalized least squares and empirical Bayes estimation in regional partial duration series index flood modeling, Water Resour. Res., 33(4), 771781.
  • Madsen, H., H. D. Rojsberg, and P. Harremõe (1994), PDS modeling and regional Bayesian estimation of extreme rainfall, Nord. Hydrol., 25(4), 279300.
  • Madsen, H., H. D. Rojsberg, and P. Harremõe (1995), Applications of the Bayesian approach in regional analysis of extreme rainfall, Stochastic Hydrol. Hydraul., 9(1), 7788.
  • Matalas, N. C., and E. J. Gilroy (1968), Some comments on regionalization in hydrologic studies, Water Resour. Res., 4, 13611369.
  • National Environment Research Council (NERC) (1975), UK Flood Studies Report, vol. 1, Hydrological Studies, ,London.
  • Ouarda, T. B. M. J., M. Haché, P. Bruneau, and B. Bobée (2000), Regional flood peak and volume estimation in northern Canadian basin, J. Cold Regions Eng., 14, 176191.
  • Ouarda, T. B. M. J., C. Girard, G. S. Cavadias, and B. Bobée (2001), Regional flood frequency estimation with canonical correlation analysis, J. Hydrol., 254, 157173.
  • Rasmussen, P. F., and D. Rojsberg (1991), Application of Bayesian principles in regional flood frequency estimation, in Advances in Water Resources Technology, edited by G. Tsakiris. pp. 6575, A. A. Balkema, Brookfield, Vt.
  • Reis, D. S.Jr., J. R. Stedinger, and E. S. Martins (2003), Bayesian GLS regression with application to LP3 regional skew estimation, paper presented at the 2003 World Water and Environmental Resources Congress, Am. Soc. of Civ. Eng., Philadelphia, Pa., 23 – 26 June .
  • Reis, D. S.Jr., J. R. Stedinger, and E. S. Martins (2005), Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation, Water Resour. Res., 41, W10419, doi:10.1029/2004WR003445.
  • Rousselle, J., and F. Hindie (1976), Uncertainty in flood peaks: A Bayesian approach (in French), J. Hydrol., 30, 341349.
  • Shane, R. M., and D. P. Gaver (1970), Statistical decision theory techniques for the revision of mean flood flow revision estimates, Water Resour. Res., 6(6), 16491654.
  • Stedinger, J. R. (1989), Using historical and regional information in flood frequency analysis, paper presented at the Pacific International Seminar on Water Resources Systems, Hokkaido Univ., Tomanu, Japan.
  • Stedinger, J. R., and L. H. Lu (1995), Appraisal of regional and index flood quantile estimators, Stochastic Hydrol. Hydraul., 9(1), 4975.
  • Stedinger, J. R., and G. D. Tasker (1985), Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared, Water Resour. Res., 21(9), 14211432.
  • Stedinger, J. R., and G. D. Tasker (1986), Regional hydrologic analysis: 2. Model-error estimators, estimation of sigma and log-Pearson type 3 distributions, Water Resour. Res., 22(10), 14871499.
  • Tasker, G. D. (1980), Hydrologic regression and weighted least squares, Water Resour. Res., 16(6), 11071113.
  • Tasker, G. D., and J. R. Stedinger (1989), An operational GLS model for hydrologic regression, J. Hydrol., 111, 361375.
  • Thomas, D. M., and M. A. Benson (1970), Generalization of streamflow characteristic from drainage-basin characteristics, U.S. Geol. Surv. Water Supply Pap., 1975.
  • Vicens, G. J., I. Rodriguez-Iturbe, and J. C. Shaake Jr. (1975), A Bayesian framework for the use of regional information in hydrology, Water Resour. Res., 11(3), 405414.