SEARCH

SEARCH BY CITATION

References

  • Alumbaugh, D., P. Y. Chang, L. Paprocki, J. R. Brainard, R. J. Glass, and C. A. Rautman (2002), Estimation of moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability, Water Resour. Res., 38(12), 1309, doi:10.1029/2001WR000754.
  • Binley, A., P. Winship, R. Middleton, M. Pokar, and J. West (2001), High-resolution characterization of vadose zone dynamics using cross-borehole radar, Water Resour. Res., 37, 26392652.
  • Blonquist, J. M.Jr., S. B. Jones, and D. A. Robinson (2005), A time domain transmission sensor with TDR performance characteristics, J. Hydrol., 314, 235245.
  • Blumberg, D. G., V. Freilikher, I. V. Lyalko, L. D. Vulfson, A. L. Kotlyar, V. N. Shevchenko, and A. D. Ryabokoneko (2000), Soil moisture (water-content) assessment by an airborne scatterometer: The Chernobyl disaster area and the Negev Desert, Remote Sens. Environ., 71, 309319.
  • Bridge, B. J., J. Sabburg, K. O. Habash, J. A. R. Ball, and N. H. Hanock (1996), The dielectric behaviour of clay soils and its application to time domain reflectometry, Aust. J. Soil Resour., 34, 825835.
  • Chanzy, A., A. Tarussov, A. Judge, and F. Bonn (1996), Soil water content determination using a digital ground-penetrating radar, Soil Sci. Soc. Am. J., 60, 13181326.
  • Cosenza, P., and A. Tabbagh (2004), Electromagnetic determination of clay water content: Role of the microporosity, Appl. Clay Sci., 26(1–4), 2136.
  • Cosenza, P., C. Camerlynck, and A. Tabbagh (2003), Differential effective medium schemes for investigating the relationship between high-frequency relative dielectric permittivity and water content of soils, Water Resour. Res., 39(9), 1230, doi:10.1029/2002WR001774.
  • Dane, J. H., and J. W. Hopmans (2002a), Hanging water column, in Methods of Soil Analysis, part 4, Physical Methods, edited by J. H. Dane, and G. C. Topp, pp. 680684, Soil Sci. Soc. of Am., Madison, Wis.
  • Dane, J. H., and J. W. Hopmans (2002b), Pressure plate extractor, in Methods of Soil Analysis, part 4, Physical Methods, edited by J. H. Dane, and G. C. Topp, pp. 688690, Soil Sci. Soc. of Am., Madison, Wis.
  • Dean, T. J., J. P. Bell, and A. J. B. Baty (1987), Soil moisture measurement by an improved capacitance technique, part I. Sensor design and performance, J. Hydrol., 93, 6778.
  • Debye, P. (1929), Polar Molecules, Chem. Cat. Co., New York.
  • Dirksen, C., and S. Dasberg (1993), Improved calibration of time domain reflectometry soil water content measurements, Soil Sci. Soc. Am. J., 57, 660667.
  • Dobson, M. C., F. T. Ulaby, M. T. Hallikainen, and M. A. El-Rayes (1985), Microwave dielectric behavior of wet soil: Part II. Dielectric mixing models, IEEE Trans. Geosci. Remote Sens., 23, 3546.
  • Du, Y., F. T. Ulaby, and M. C. Dobson (2000), Sensitivity to soil moisture by active and passive microwave sensors, IEEE Trans. Geosci. Remote Sens., 38, 105114.
  • Dubois, P. C., J. van Zyl, and T. Engman (1995), Measuring soil moisture with imaging radars, IEEE Trans. Geosci. Remote Sens., 33, 915926.
  • Durner, W. (1994), Hydraulic conductivity estimation for soils with heterogeneous pore structure, Water Resour. Res., 30, 211223.
  • Flint, A. L., and L. E. Flint (2002), Particle density, in Methods of Soil Analysis, part 4, Physical Methods, edited by J. H. Dane, and G. C. Topp, pp. 229240, Soil Sci. Soc. of Am., Madison, Wis.
  • Friedman, S. P. (1998), A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media, Water Resour. Res., 34, 29492961.
  • Friedman, S. P., and S. B. Jones (2001), Measurement and approximate critical path analysis of the pore-scale-induced anisotropy factor of an unsaturated porous medium, Water Resour. Res., 37, 29292942.
  • Friedman, S. P., and D. A. Robinson (2002), Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media, Water Resour. Res., 38(11), 1236, doi:10.1029/2001WR000746.
  • Gaskin, G. J., and J. D. Miller (1996), Measurement of soil water content using a simplified impedance measuring technique, J. Agric. Eng. Res., 63, 153159.
  • Haines, W. B. (1930), The hysteresis effect in capillary properties and the modes of moisture distribution associated therewith, J. Agric. Sci., 20, 96105.
  • Hasted, J. B. (1973), Aqueous Dielectrics, CRC Press, Boca Raton, Fla.
  • Hasted, J. B., D. M. Ritson, and C. H. Collie (1948), Dielectric properties of aqueous solutions. Part I, J. Chem. Phys., 16, 111.
  • Hilhorst, M. A., J. Balendonck, and F. H. W. Kampers (1993), A broad-bandwidth mixed analog/digital integrated circuit for the measurement of complex impedances, IEEE J. Solid State Circuits, 28, 764769.
  • Hoekstra, P., and A. Delaney (1974), Dielectric properties of soils at UHF and microwave frequencies, J. Geophys. Res., 79, 16991708.
  • Huisman, J. A., C. Sperl, W. Bouten, and J. M. Verstraten (2001), Soil water content measurements at different scales: Accuracy of time domain reflectometry and ground-penetration radar, J. Hydrol., 245, 4858.
  • Ishida, T., and T. Makino (1999), Effects of pH on dielectric relaxation of montmorillonite, allophone, and imogolite suspensions, J. Colloid Interface Sci., 212, 152161.
  • Jacobsen, O. H., and P. Schjønning (1993), A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk density and texture, J. Hydrol., 151, 147158.
  • Jones, S. B., and S. P. Friedman (2000), Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles, Water Resour. Res., 36, 28212833.
  • Jones, S. B., and D. Or (2002), Surface area, geometrical and configurational effects on permittivity of porous media, J. Non Crystalline Solids, 305, 247254.
  • Jones, S. B., J. M. Wraith, and D. Or (2002), Time domain reflectometry measurement principles and applications, Hydrol. Processes, 16, 141153.
  • Kelleners, T. J., R. O. W. Soppe, D. A. Robinson, M. G. Schaap, J. E. Ayers, and T. H. Skaggs (2004), Calibration of capacitance probe sensors using electric circuit theory, Soil Sci. Soc. Am. J., 68, 430439.
  • Knight, J. H. (1992), Sensitivity of time domain reflectometry measurements to lateral variations in soil water content, Water Resour. Res., 28, 23452352.
  • Kosugi, K., J. W. Hopmans, and J. H. Dane (2002), Parametric models, in Methods of Soil Analysis, part 4, Physical Methods, edited by J. H. Dane, and G. C. Topp, pp. 739755, Soil Sci. Soc. of Am., Madison, Wis.
  • Lesch, S. M., D. L. Corwin, and D. A. Robinson (2005), Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils, Comput. Electron. Agric., 46, 351378.
  • Logsdon, S. D. (2005), Soil dielectric spectra from vector network analyzer data, Soil Sci. Soc. Am J., 69, 983989.
  • Malicki, M. A., R. Plagge, and C. H. Roth (1996), Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil, Eur. J. Soil Sci., 47, 357366.
  • Maxwell-Garnett, J. C. (1904), Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. London, Ser. A, 203, 385420.
  • Miyamoto, T., A. Takeyuki, and J. Chikushi (2003), Soil aggregate structure effects on dielectric permittivity of an Andisol measured by time domain reflectometry, Vadose Zone J., 2, 9097.
  • Miyamoto, T., A. Takeyuki, and J. Chikushi (2005), Extended dual composite sphere model for determining dielectric permittivity of Andisols, Soil Sci. Soc. Am. J., 69, 2329.
  • Noborio, K. (2001), Measurement of soil water content and electrical conductivity by time domain reflectometry: A review, Comput. Electron. Agric., 31, 213237.
  • Or, D., and J. M. Wraith (1999), Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model, Water Resour. Res., 35, 371383.
  • Or, D., S. B. Jones, J. R. VanShaar, and J. M. Wraith (2003), WinTDR 6.0 users guide (Windows-based TDR program for soil water content and electrical conductivity measurement), report, Utah Agric. Exp. Stn. Res., Logan. (Available at http://soilphysics.usu.edu/wintdr/documentation.htm).
  • Palmer, L. S. (1952), On the dielectric constant of water in wet clay, Proc. Phys. Soc. London, Sect. B, 65(9), 674678.
  • Paltineanu, I. C., and J. L. Starr (1997), Real-time soil water dynamics using multisensor capacitance probes: Laboratory calibration, Soil Sci. Soc. Am. J., 61, 15761585.
  • Quirk, J. P. (1955), Significance of surface areas calculated from water vapor sorption isotherms by use of the B.E.T. equation, Soil Sci., 80, 423430.
  • Quirk, J. P., and R. S. Murray (1999), Appraisal of ethylene glycol monoethyl ether method for measuring hydratable surface area of clays and soils, Soil Sci. Soc. Am. J., 63, 839849.
  • Robinson, D. A. (2004), Measurement of the solid dielectric permittivity of clay minerals and granular samples using a time domain reflectometry immersion method, Vadose Zone J., 3, 705713.
  • Robinson, D. A., and S. P. Friedman (2000), Parallel plates compared with conventional rods as TDR waveguides for sensing soil moisture, Subsurface Sens. Technol. Appl., 1, 497511.
  • Robinson, D. A., and S. P. Friedman (2001), Effect of particle size distribution on the effective dielectric permittivity of saturated granular media, Water Resour. Res., 37, 3340.
  • Robinson, D. A., and S. P. Friedman (2005), Electrical conductivity and dielectric permittivity of sphere packings: Measurements and modeling of cubic lattices, randomly packed monosize spheres and multi-size mixtures, Physica A, 358, 447465.
  • Robinson, D. A., J. D. Cooper, and C. M. K. Gardner (2001), Modelling the relative permittivity of soils using soil hygroscopic water content, J. Hydrol., 255, 3949.
  • Robinson, D. A., M. Schaap, S. B. Jones, S. P. Friedman, and C. M. K. Gardner (2003a), Considerations for improving the accuracy of permittivity measurement using time domain reflectometry: Air-water calibration, effects of cable length, Soil Sci. Soc. Am. J., 67, 6270.
  • Robinson, D. A., S. B. Jones, J. M. Wraith, D. Or, and S. P. Friedman (2003b), A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry, Vadose Zone J., 2, 444475.
  • Robinson, D. A., S. B. Jones, J. M. Blonquist Jr., and S. P. Friedman (2005), A physically based water content/permittivity calibration model for coarse-textured, layered soils, Soil Sci. Soc. Am. J., 69, 13721378.
  • Roth, C. H., M. A. Malicki, and R. Plagge (1992), Empirical evaluation of the relationship between soil dielectric constant and volumetric water content and the basis for calibrating soil moisture measurements by TDR, J. Soil Sci., 43, 113.
  • Sanchez, P. A. (1976), Properties and Management of Soils in the Tropics, John Wiley, Hoboken, N. J.,
  • Scanlon, B. R., B. J. Andraski, and J. Bilskie (2002), Miscellaneous methods for measuring matric or water potential, in Methods of Soil Analysis, part 4, Physical Methods, edited by J. H. Dane, and G. C. Topp, pp. 643669, Soil Sci. Soc. of Am., Madison, Wis.
  • Seyfried, M. S., and M. D. Murdock (2004), Measurement of soil water content with a 50-MHz soil dielectric sensor, Soil Sci. Soc. Am. J., 68, 394403.
  • Sihvola, A. H. (1999), Electromagnetic Mixing Formulas and Applications, Inst. of Electr. Eng., London.
  • Sihvola, A. H., and J. A. Kong (1988), Effective permittivity of dielectric mixtures, IEEE Trans. Geosci. Remote Sens., 26, 420429.
  • Steinberg, S. L., D. W. Ming, K. E. Henderson, C. Carrier, J. E. Gruener, D. J. Barta, and D. L. Henninger (2000), Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems, Agron. J., 92, 353360.
  • Steinberg, S. L., G. Kluitenberg, S. B. Jones, N. Diadzic, L. Reddi, M. Xiao, M. Tuller, R. Newman, D. Or, and J. I. D. Alexander (2005), Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium, J. Am. Soc. Hortic. Sci., 130(5), 767774.
  • Stuchly, S. S. (1970), Dielectric properties of some granular solids containing water, Microwave Power, J., 5, 6268.
  • Thorp, J. M. (1959), The dielectric behaviour of vapours adsorbed on porous solids, Trans. Faraday Soc., 55, 442454.
  • Topp, G. C., and P. A. Ferré (2002), Thermogravimetric method using convective oven-drying, in Methods of Soil Analysis, part 4, Physical Methods, edited by J. H. Dane, and G. C. Topp, p. 419, Soil Sci. Soc. of Am., Madison, Wis.
  • Topp, G. C., J. L. Davis, and A. P. Annan (1980), Electromagnetic determination of soil water content: Measurements in coaxial transmission lines, Water Resour. Res., 16, 574582.
  • van Overmeeren, R. A., S. V. Sariowan, and J. C. Gehrels (1997), Ground penetrating radar for determining volumetric soil water content: Results of comparative measurements at two test sites, J. Hydrol., 197, 316338.
  • Ulaby, F. T., C. D. Pascale, and J. van Zyl (1996), Radar mapping of surface soil moisture, J. Hydrol., 184, 5784.
  • van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • Wada, K. (1989), Allophane and Imogolite, in Minerals in Soil Environments, edited by J. B. Dixon, and S. B. Weed, pp. 10511087, Soil Sci. Soc. of Am., Madison, Wis.
  • Weast, R. C. (Ed.) (1986), CRC Handbook of Chemistry and Physics, 67th ed., CRC Press, Boca Raton, Fla.
  • Wraith, J. M., and D. Or (1999), Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: Experimental evidence and hypothesis development, Water Resour. Res., 35, 361369.
  • Yu, C. W., A. W. Warrick, M. H. Conklin, M. H. Young, and M. Zreda (1997), Two- and three- parameter calibrations of time domain reflectometry for soil moisture measurement, Water Resour. Res., 33, 24172421.