SEARCH

SEARCH BY CITATION

References

  • Arsac, J. (1966), Fourier Transforms and the Theory of Distributions, Prentice-Hall, Upper Saddle River, N. J.,
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, Dover, Mineola, N. Y.,
  • Bohling, G. C., X. Zhan, J. J. Butler, and L. Zheng (2002), Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities, Water Resour. Res., 38(12), 1324, doi:10.1029/2001WR001176.
  • Bowman, F. (1958), Introduction to Bessel Functions, Dover, Mineola, N. Y.,
  • Bracewell, R. N. (1978), The Fourier Transform and Its Applications, McGraw-Hill, New York.
  • Brauchler, R., R. Liedl, and P. Dietrich (2003), A traveltime based hydraulic tomographic approach, Water Resour. Res., 39(12), 1370, doi:10.1029/2003WR002262.
  • Butler, J. J. (1988), Pumping tests in nonuniform aquifers—The radially symmetric case, J. Hydrol., 101, 1530.
  • Butler, J. J., C. D. McElwee, and G. C. Bohling (1999), Pumping tests in networks of multilevel sampling wells: Motivation and methodology, Water Resour. Res., 35, 35533560.
  • Chapman, S. J., J. M. H. Lawry, and J. R. Ockendon (1999), Ray theory for high-peclet-number convection-diffusion, SIAM J. Appl. Math., 60, 121135.
  • Cohen, A. (1993), Hydrologic characterization of fractured granitic rock aquifer, Raymond California, M.S. thesis, Univ. of Calif., Berkeley.
  • Cohen, J. K., and R. M. Lewis (1967), A ray method for the asymptotic solution of the diffusion equation, J. Inst. Math. Appl., 3, 266290.
  • Cook, P. J. (1995), Analysis of interwell hydraulic connectivity in fractured granite, M.S. thesis, Univ. of Calif., Berkeley.
  • de Marsily, G. (1986), Quantitative Hydrogeology, Elsevier, New York.
  • Dingle, R. B. (1973), Asymptotic Expansions: Their Derivation and Interpretation, Elsevier, New York.
  • Fabian, M., and H. J. Kuempel (2003), Poroelasticity: Observations of anomalous near surface tilt induced by ground water pumping, J. Hydrol., 281, 187205.
  • Freyberg, D. L. (1986), A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers, Water Resour. Res., 22, 20312046.
  • Friedlander, F. G., and J. B. Keller (1955), Asymptotic expansions of solutions of (∇2 + k2)u = 0, Commun. Pure Appl. Math., 8, 387394.
  • Gradshteyn, I. S., and I. M. Ryzhik (1980), Table of Integrals, Series, and Products, Elsevier, New York.
  • Gringarten, A. C., T. von Schroeter, T. Rolfsvaag, and J. Bruner (2003), Use of downhole permanent pressure gauge data to diagnose production problems in a North Sea horizontal well, paper presented at SPE Annual Technical Conference and Exhibition, Denver, Colo., 5–8 Oct.
  • He, Z., A. Datta-Gupta, and D. W. Vasco (2006), Rapid inverse modeling of pressure interference tests using trajectory-based traveltime and amplitude sensitivities, Water Resour. Res., 42, W03419, doi:10.1029/2004WR003783.
  • Hsieh, P. A., S. P. Neuman, G. K. Stiles, and E. S. Simpson (1985), Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2. Methodology and application to fractured rocks, Water Resour. Res., 21, 16671676.
  • Karasaki, K., B. Freifeld, A. Cohen, K. Grossenbacher, P. Cook, and D. Vasco (2000), A multidisciplinary fractured rock characterization study at the Raymond field site, Raymond California, J. Hydrol., 236, 1734.
  • Keller, J. B., and R. M. Lewis (1995), Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations, in Surveys in Applied Mathematics, vol. 1, edited by J. B. Keller, D. W. McLaughlin, and G. Papanicoulaou, pp. 182, Springer, New York.
  • Kline, M., and I. W. Kay (1979), Electromagnetic Theory and Geometrical Optics, Krieger, Melbourne, Fla.,
  • Masumoto, K., H. Tosaka, K. Kojimi, K. Itoh, and Y. Otsuka (1995), New measuring system and high speed three dimensional inversion method for hydropulse tomography, in Proceedings of 8th International Congress on Rock Mechanics, edited by T. Fuji, pp. 847850, A. A. Balkema, Brookfield, Vt.,
  • Mauldon, A. D., K. Karasaki, S. J. Martel, J. C. S. Long, M. Landsfeld, A. Mensch, and S. Vomvoris (1993), An inversion technique for developing models for fluid flow in fractured systems using simulated annealing, Water Resour. Res., 29, 37753789.
  • Mendez-Delgado, S., E. Gomez-Trevino, and M. A. Perez-Flores (1999), Forward modeling of direct current and low-frequency electromagnetic fields using integral equations, Geophys. J. Int., 137, 336352.
  • Nakao, S., J. Najita, and K. Karasaki (2001), Sensitivity study of hydraulic well testing inversion using simulated annealing, Ground Water, 37, 737747.
  • Oliver, D. S. (1993), The influence of nonuniform transmissivity and storativity on drawdown, Water Resour. Res., 29, 169178.
  • Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse linear systems, ACM Trans. Math. Software, 8, 195209.
  • Paillet, F. L. (1993), Using borehole geophysics and cross-borehole flow testing to define connections between fracture zones in bedrock aquifers, J. Appl. Geophys., 30, 261279.
  • Parker, R. L. (1994), Geophysical Inverse Theory, Princeton Univ. Press, Princeton, N. J.,
  • Smith, R. (1981), The early stages of contaminant dispersion in shear flows, J. Fluid. Mech., 111, 107122.
  • Sun, N.-Z. (1994), Inverse Problems in Groundwater Modeling, Springer, New York.
  • Tikhonov, A. N. (1965), Mathematical basis of the theory of electromagnetic soundings, USSR Comput. Math. Math. Phys., 5, 207211.
  • Vasco, D. W. (1999), Intersections, ideals, and inversion, Inverse Problems, 15, 15731602.
  • Vasco, D. W. (2000), An algebraic formulation of geophysical inverse problems, Geophys. J. Int., 142, 970990.
  • Vasco, D. W. (2004), Estimation of flow properties using surface deformation and head data: A trajectory-based approach, Water Resour. Res., 40, W10104, doi:10.1029/2004WR003272.
  • Vasco, D. W., and S. Finsterle (2004), Numerical trajectory calculations for the efficient inversion of transient flow and tracer observations, Water Resour. Res., 40, W01507, doi:10.1029/2003WR002362.
  • Vasco, D. W., and K. Karasaki (2001), Inversion of pressure observations: An integral formulation, J. Hydrol., 253, 2740.
  • Vasco, D. W., J. E. Peterson, and E. L. Majer (1996), A simultaneous inversion of seismic traveltimes and amplitudes for velocity and attenuation, Geophysics, 61, 17381757.
  • Vasco, D. W., H. Keers, and K. Karasaki (2000), Estimation of reservoir properties using transient pressure data: An asymptotic approach, Water Resour. Res., 36, 34473465.
  • Vesselinov, V. V., S. P. Neuman, and W. A. Illman (2001), Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. Equivalent parameters high-resolution stochastic imaging, and scale effects, Water Resour. Res., 37, 30013017.
  • Virieux, J., C. Flores-Luna, and D. Gibert (1994), Asymptotic theory for diffusive electromagnetic imaging, Geophys. J. Int., 119, 857868.
  • Yeh, T.-C. J., and S. Liu (2000), Hydraulic tomography: Development of a new aquifer test method, Water Resour. Res., 36, 20952105.