SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1974), A new look at statistical model identification, IEEE Trans. Autom. Control, 19, 716723.
  • Akaike, H. (1977), On entropy maximization principle, in Application of Statistics, edited by P. R. Krishnaiah, pp. 2741, Elsevier, New York.
  • Capilla, J. E., J. J. Gómez-Hernández, and A. Sahuquillo (1997), Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric head data: 2. Demonstration on a synthetic aquifer, J. Hydrol., 203(1–4), 175188.
  • Carrera, J., and L. Glorioso (1991), On geostatistical formulations of the groundwater flow inverse problem, Adv. Water Resour., 14(5), 273283.
  • Carrera, J., and S. P. Neuman (1986a), Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information, Water Resour. Res., 22(2), 199210.
  • Carrera, J., and S. P. Neuman (1986b), Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms, Water Resour. Res., 22(2), 211227.
  • Carrera, J., A. Alcolea, A. Medina, J. Hidalgo, and L. J. Slooten (2005), Inverse problem in hydrogeology, Hydrogeol. J., 13(1), 206222.
  • Dagan, G. (1985), Stochastic modeling of groundwater flow by unconditional and conditional probabilities: The inverse problem, Water Resour. Res., 21(1), 6572.
  • Dagan, G. (1989), Flow and Transport in Porous Formations, Springer, New York.
  • Dagan, G., and S. P. Neuman (Eds.) (1997), Subsurface Flow and Transport, Cambridge Univ. Press, New York.
  • De Marsily, G. (1978), De l'identification des systèmes hydrogéologiques (On the identification of hydrogeological systems), thése d'etat, Univ. Pierre et Marie Curie, Paris.
  • De Marsily, G., C. Lavedan, M. Bouchere, and G. Fasanino (1984), Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model, in Geostatistics for Natural Resources Characterization, Part 2, NATO ASI Ser., Ser. C, vol. 182, edited by G. Verly et al., pp. 831849, Springer, New York.
  • Deutsch, C. V., and A. G. Journel (1998), GSLIB Geostatistical Software Library and User's Guide, 2nd ed., Oxford Univ. Press, New York.
  • Doherty, J. (2002), PEST: Model Independent Parameter Estimation, User Manual, 4th ed., Watermark Numer. Comput., Corinda, Queensland, Australia.
  • Doherty, J. (2003), Groundwater model calibration using pilot points and regularisation, Ground Water, 41(2), 170177.
  • Franssen, H.-J. H., and J. J. Gómez-Hernández (2002), 3D inverse modelling of groundwater flow at a fractured site using a stochastic continuum model with multiple statistical populations, Stochastic Environ. Risk Assess., 16(2), 155174.
  • Gelhar, L. W. (1993), Stochastic Subsurface Hydrology, Prentice-Hall, Upper Saddle River, N. J.,
  • Gómez-Hernández, J. J., A. Sahuquillo, and J. E. Capilla (1997), Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data: 1. Theory, J. Hydrol., 203(1–4), 162174.
  • Guadagnini, A., and S. P. Neuman (1999a), Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 1. Theory and computational approach, Water Resour. Res., 35(10), 29993018.
  • Guadagnini, A., and S. P. Neuman (1999b), Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 2. Computational examples, Water Resour. Res., 35(10), 30193039.
  • Gutjahr, A. L., and J. R. Wilson (1989), Co-kriging for stochastic flow models, Transp. Porous Media, 4(6), 585598.
  • Gutjahr, A., B. Bullard, S. Hatch, and L. Hughson (1994), Joint conditional simulations and the spectral approach for flow modeling, Stochastic Hydrol. Hydraul., 8(1), 79108.
  • Hanna, S., and T.-C. J. Yeh (1998), Estimation of co-conditional moments of transmissivity, hydraulic head, and velocity fields, Adv. Water Resour., 22(1), 8795.
  • Hannan, E. S. (1980), The estimation of the order of an ARMA process, Ann. Stat., 8, 19711981.
  • Hernandez, A. F. (2002), Conditioning nonlocal steady-state flow on hydraulic head and conductivity through geostatistical inversion, Ph.D. dissertation, Univ. of Ariz., Tucson.
  • Hernandez, A. F., S. P. Neuman, A. Guadagnini, and J. Carrera-Ramirez (2002), Conditioning steady state mean stochastic flow equations on head and hydraulic conductivity measurements, Calibration and Reliability in Groundwater Modelling: A Few Steps Closer to Realisty (Proc. ModelCARE 2002, Prague, Czech Republic, June 2002), IAHS Publ. 277, edited by K. Kovar, and Z. Hrkal, pp. 122128, Charles Univ., Wallingford, U. K.,
  • Hernandez, A. F., S. P. Neuman, A. Guadagnini, and J. Carrera (2003), Conditioning mean steady state flow on hydraulic head and conductivity through geostatistical inversion, Stochastic Environ. Res. Risk Assess., 17(5), 329338, doi:10.1007/s00477-003-0154-4.
  • Hoeksema, R. J., and P. K. Kitanidis (1984), An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling, Water Resour. Res., 20(7), 10031020.
  • Hu, L. Y. (2000), Gradual deformation and iterative calibration of Gaussian-related stochastic models, Math. Geol., 32(1), 87108.
  • Jiang, Y., A. D. Woodbury, and S. Painter (2004), A full-Bayesian inversion of the Edwards aquifer, Ground Water, 42(5), 724733.
  • Kashyap, R. L. (1982), Optimal choice of AR and MA parts in autoregressive moving average models, IEEE Trans. Pattern Anal. Mach. Intel., 4(2), 99104.
  • Kitanidis, P. K. (1997), Introduction to Geostatistics: Applications in Hydrogeology, Cambridge Univ. Press, New York.
  • Kitanidis, P. K., and E. G. Vomvoris (1983), A geostatistical approach to the inverse problem in groundwater modeling (steady-state) and one-dimensional simulations, Water Resour. Res., 19(3), 677690.
  • LaVenue, A. M., B. S. RamaRao, G. De Marsily, and M. G. Marietta (1995), Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 2. Application, Water Resour. Res., 31(3), 495516.
  • Liu, J. W. H. (1987), A collection of routines for an implementation of the multifrontal method, Tech. Rep. CS-90-04, Dep. of Comput. Sci., York Univ., North York, Ont., Canada.
  • Neuman, S. P. (1997), Stochastic approach to subsurface flow and transport: A view to the future, in Subsurface Flow and Transport, edited by G. Dagan, and S. P. Neuman, pp. 231241, Cambridge Univ. Press, New York.
  • Neuman, S. P., and S. Orr (1993), Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal formalism, effective conductivities, and weak approximation, Water Resour. Res., 29(2), 341364. (Correction, Water Resour. Res., 32(5), 1479–1480, 1996.).
  • Oliver, D. S., L. B. Cunha, and A. C. Reynolds (1997), Markov chain Monte Carlo methods for conditioning a permeability field to pressure data, Math. Geol., 29(1), 6191.
  • RamaRao, B. S., A. M. LaVenue, G. de Marsily, and M. G. Marietta (1995), Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. Theory and computational experiments, Water Resour. Res., 31(3), 475493.
  • Rubin, Y. (2003), Applied Stochastic Hydrogeology, Oxford Univ. Press, New York.
  • Rubin, Y., and G. Dagan (1987), Stochastic identification of transmissivity and effective recharge in steady groundwater flow: 1. Theory, Water Resour. Res., 23(7), 11851192.
  • Sahuquillo, A., J. E. Capilla, J. J. Gómez-Hernández, and J. Andreu (1992), Conditional simulation of transmissivity fields honoring piezometric data, in Fluid Flow Modelling, edited by W. R. Blain, and E. Cabrera, pp. 201212, Elsevier, New York.
  • Samper, F. J., and S. P. Neuman (1989a), Estimation of spatial covariance structures by adjoint state maximum likelihood cross-validation: 1. Theory, Water Resour. Res., 25(3), 351362.
  • Samper, F. J., and S. P. Neuman (1989b), Estimation of spatial covariance structures by adjoint state maximum likelihood cross-validation: 2. Synthetic experiments, Water Resour. Res., 25(3), 363372.
  • Samper, F. J., J. C. Cuchi, and R. Poncela (1993), Estimation of spatial cross-covariances by maximum likelihood cross-covalidation: Application to hydraulic heads and transmissivities, in Geostatistis Troia '92, vol. 2, edited by A. Soares, pp. 721744, Springer, New York.
  • Tartakovsky, D. M., and S. P. Neuman (1998), Transient flow in bounded randomly heterogeneous domains: 1. Exact conditional moment equations and recursive approximations, Water Resour. Res., 34(1), 112.
  • Woodbury, A. D., and T. J. Ulrych (2000), A full-Bayesian approach to the groundwater inverse problem for steady state flow, Water Resour. Res., 36(8), 20812093.
  • Ye, M., S. P. Neuman, A. Guadagnini, and D. M. Tartakovsky (2004), Nonlocal and localized analyses of conditional mean transient flow in bounded, randomly heterogeneous porous media, Water Resour. Res., 40, W05104, doi:10.1029/2003WR002099.
  • Zhang, D. (2001), Stochastic Methods for Flow in Porous Media, Elsevier, New York.,
  • Zimmerman, D. A., et al. (1998), A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow, Water Resour. Res., 34(61), 373413.