SEARCH

SEARCH BY CITATION

References

  • Arneodo, A., G. Grasseau, and M. Holschneider (1988), Wavelet transform of multifractals, Phys. Rev. Lett., 61, 22812284.
  • Arneodo, A., E. Bacry, and J. F. Muzy (1995a), The thermodynamics of fractals revisited with wavelets, Physica A, 213, 232275.
  • Arneodo, A., E. Bacry, and J. F. Muzy (1995b), Oscillating singularities in locally self-similar functions, Phys. Rev. Lett., 74, 48234826.
  • Arneodo, A., E. Bacry, S. Jaffard, and J. F. Muzy (1997a), Oscillating singularities on cantor sets: A grand-canonical multifractal formalism, J. Stat. Phys., 87, 179209.
  • Arneodo, A., J. F. Muzy, and S. G. Roux (1997b), Experimental analysis of self-similarity and random cascade processes: Application to fully developed turbulence data, J. Phys. II, 7, 363370.
  • Arneodo, A., E. Bacry, S. Manneville, and J. F. Muzy (1998a), Analysis of random cascades using space-scale correlation functions, Phys. Rev. Lett., 80, 708711.
  • Arneodo, A., E. Bacry, and J. F. Muzy (1998b), Random cascades on wavelet dyadic trees, J. Math. Phys., 39, 41424164.
  • Arneodo, A., E. Bacry, and J. F. Muzy (1998c), Towards log-normal statistics in high Reynolds number turbulence, Eur. Phys. J. B, 1, 129140.
  • Arneodo, A., S. Manneville, J. F. Muzy, and S. G. Roux (1999), Revealing a lognormal cascading process in turbulent velocity statistics with wavelet analysis, Philos. Trans. R. Soc. London, Ser. A, 357, 24152438.
  • Bacry, E., J. F. Muzy, and A. Arneodo (1993), Singularity spectrum of fractal signals from wavelet analysis: Exact results, J. Stat. Phys., 70, 635674.
  • Cârsteanu, A., and E. Foufoula-Georgiou (1996), Assessing dependence among weights in a multiplicative cascade model of temporal rainfall, J. Geophys. Res., 101, 26,36326,370.
  • Castaing, B., Y. Gagne, and E. J. Hopfinger (1990), Velocity probability density-functions of high Reynolds-number turbulence, Physica D, 46, 177200.
  • Castaing, B., Y. Gagne, and M. Marchand (1993), Log-similarity for turbulent flows, Physica D, 68, 387400.
  • Chanal, O., B. Chabaud, B. Castaing, and B. Hebral (2000), Intermittency in a turbulent low temperature gaseous helium jet, Eur. Phys. J. B, 17, 309317.
  • Collet, P., J. L. Lebowitz, and A. Porzio (1987), The dimension spectrum of some dynamical systems, J. Stat. Phys., 47, 609644.
  • Daubechies, I. (1992), Ten Lectures on Wavelets, CBMS-NSF Reg. Conf. Ser. Appl. Math., vol. 61, Soc. for Ind. and Appl. Math., Philadelphia, Pa.
  • Davis, A., A. Marshak, and W. Wiscombe (1994), Wavelet-based multifractal analysis of non-stationary and/or intermittent geophysical signals, in Wavelets in Geophysics, edited by E. Foufoula-Georgiou, and P. Kumar, pp. 249298, Elsevier, New York.
  • Deidda, R., R. Benzi, and F. Siccardi (1999), Multifractal modeling of anomalous scaling laws in rainfall, Water Resour. Res., 35, 18531867.
  • Delour, J. (2001), Processus aléatoire auto-similaire: Applications en turbulence et en finance, Ph.D. thesis, Univ. of Bordeaux I, Talence, France.
  • Delour, J., J. F. Muzy, and A. Arneodo (2001), Intermittency of 1D velocity spatial profiles in turbulence: A magnitude cumulant analysis, Eur. Phys. J. B, 23, 243248.
  • Foufoula-Georgiou, E. (1997), On stochastic theories of space-time rainfall: Some recent results and open problems, in Stochastic Methods in Hydrology: Rain, Landforms and Floods, Adv. Ser. on Stat. Sci. and Appl. Probab., vol. 7, edited by V. Gupta et al., pp. 2572, World Sci., Hackensack, N. J.
  • Frisch, U. (1995), Turbulence, Cambridge Univ. Press, New York.
  • Georgakakos, K. P., A. A. Cârsteanu, and J. A. Cramer (1994), Observation and analysis of midwestern rain rates, J. Appl. Meteorol., 33, 14331444.
  • Grassberger, P., R. Badii, and A. Politi (1988), Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors, J. Stat. Phys., 51, 135178.
  • Halsey, T. C., M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman (1986), Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A, 33, 11411151.
  • Harris, D., M. Menabde, A. Seed, and G. Austin (1998), Breakdown coefficients and scaling properties of rain fields, Nonlinear Processes Geophys., 5, 93104.
  • Holschneider, M. (1989), L'analyse d'objets fractals et leur transformation en ondelettes, Ph.D. thesis, Univ. of Aix-Marseille II, Marseille, France.
  • Holschneider, M., and P. Tchamitchian (1990), Regularité locale de la fonction “non-differentiable” de Riemann, in Les Ondelettes en 1989, Lect. Notes in Math., vol. 1438, edited by P. G. Lemarié, pp. 102124, Springer, New York.
  • Jaffard, S. (1989), Exposants de Hölder en des points donnés et coefficients en ondelettes, C. R. Acad. Sci., Ser. I, 308, 7981.
  • Jaffard, S. (1997), Multifractal formalism for functions: 1. Results valid for all functions, SIAM J. Math. Anal., 28, 944970.
  • Lashermes, B. (2005), Analyse multifractale pratique: coefficients dominants et ordres critiques. Applications à la turbulence pleinement développée. Effets de nombre de Reynolds fini, Ph.D. thesis, École Normale Supérieure de Lyon, Lyon, France.
  • Lashermes, B., P. Abry, and P. Chanai (2004), New insights into the estimation of scaling exponents, Int. J. Wavelets Multiresolut. Info. Processing, 2, 497523.
  • Malecot, Y., C. Auriault, H. Kahalerras, Y. Gagne, O. Chanal, B. Chabaud, and B. Castaing (2000), A statistical estimator of turbulence intermittency in physical and numerical experiments, Eur. Phys. J. B, 16, 549561.
  • Mallat, S. (1989), A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11(7), 674693.
  • Mallat, S. (1998), A Wavelet Tour in Signal Processing, Elsevier, New York.
  • Mallat, S., and W. L. Hwang (1992), Singularity detection and processing with wavelets, IEEE Trans. Inf. Theory, 38, 617643.
  • Marsan, D., D. N. Schertzer, and S. Lovejoy (1996), Causal space-time multifractal processes: Predictability and forecasting of rain fields, J. Geophys. Res., 101(D21), 26,33326,346.
  • Menabde, M., and M. Sivapalan (2000), Modeling of rainfall time series and extremes using bounded random cascades and Lévy-stable distributions, Water Resour. Res., 36, 32933300.
  • Meneveau, C., and K. R. Sreenivasan (1991), The multifractal nature of turbulent energy-dissipation, J. Fluid Mech., 224, 429484.
  • Meyer, Y. (1992), Wavelet and Applications, Springer, New York.
  • Muzy, J. F., E. Bacry, and A. Arneodo (1991), Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. Lett., 67, 35153518.
  • Muzy, J. F., E. Bacry, and A. Arneodo (1993), Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. E, 47, 875884.
  • Muzy, J. F., E. Bacry, and A. Arneodo (1994), The multifractal formalism revisited with wavelets, Int. J. Bifurcation Chaos, 4, 245302.
  • Olsson, J., J. Niemczynowicz, and R. Berndtsson (1993), Fractal analysis of high-resolution rainfall time series, J. Geophys. Res., 98(D12), 23,26523,274.
  • O'Neil, J., and C. Meneveau (1993), Spatial correlations in turbulence: Predictions from the multifractal formalism and comparison with experiments, Phys. Fluids A, 5, 158172.
  • Paladin, G., and A. Vulpiani (1987), Anomalous scaling laws in multifractal objects, Phys. Rep., 156, 147225.
  • Parisi, G., and U. Frisch (1985), On the singularity structure of fully developed turbulence, in Turbulence and Predictability in Geophysical Fluid Dynamics, edited by M. Ghil, R. Benzi, and G. Parisi, pp. 8488, Elsevier, New York.
  • Perica, S., and E. Foufoula-Georgiou (1996), Linkage of scaling and thermodynamic parameters of rainfall: Results from midlatitude mesoscale convective systems, J. Geophys. Res., 101(D3), 74317448.
  • Roux, S., J. F. Muzy, and A. Arneodo (1999), Detecting vorticity filaments using wavelet analysis: About the statistical contribution of vorticity filaments to intermittency in swirling turbulent flows, Eur. Phys. J. B, 8, 301322.
  • Schertzer, D., and S. Lovejoy (1987), Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J. Geophys. Res., 92(D8), 96939714.
  • Schertzer, D., S. Lovejoy, F. Schmitt, Y. Chiguirinskaya, and D. Marsan (1997), Multifractal cascade dynamics and turbulent intermittency, Fractals, 5, 427471.
  • Veneziano, D., R. L. Bras, and J. D. Niemann (1996), Nonlinearity and self-similarity of rainfall in time and a stochastic model, J. Geophys. Res., 101(D21), 26,37126,392.
  • Venugopal, V., and E. Foufoula-Georgiou (1996), Energy decomposition of rainfall in the time-frequency-scale domain using wavelet packets, J. Hydrol., 187, 327.
  • Venugopal, V., E. Foufoula-Georgiou, and V. Sapozhnikov (1999), A space-time downscaling model for rainfall, J. Geophys. Res., 104(D16), 19,70519,721.