SEARCH

SEARCH BY CITATION

References

  • Barral, J., and B. B. Mandelbrot (2002), Multifractal products of cylindrical pulses, Probab. Theory Related Fields, 124(3), 409430.
  • Benzi, R., L. Biferale, and F. Toschi (2003), Intermittency in turbulence: Multiplicative random processes in space and time, J. Stat. Phys., 113(5), 783798.
  • Bhattacharya, R., L. Chen, S. Dobson, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, and E. C. Waymire (2003), Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations, Trans. Am. Math. Soc., 355(12), 50035040.
  • Biferale, L., G. Boffetta, A. Celani, and F. Toschi (1999), Multi-time, multi-scale correlation functions in turbulence and in turbulent models, Physica D, 127, 187197.
  • Burd, G., and E. Waymire (2000), Self-similar invariance of critical binary Galton-Watson trees, Proc. Am. Math. Soc., 128, 27532761.
  • Burd, G., E. Waymire, and R. Winn (2000), Self-similar invariance of critical binary Galton-Watson trees, Bernoulli, 6, 121.
  • Catrakis, H. J., and P. E. Domotakis (1998), Shape complexity in turbulence, Phys. Rev. Lett., 80, 968971.
  • Cleve, J., T. Dziekan, J. Schmiegel, O. E. Barndorff-Nielsen, B. R. Pearson, K. R. Sreenivasan, and M. Greiner (2005), Finite-size scaling of two point statistics and the turbulent energy cascade generators, Phys. Rev. E., 71, 026309.
  • Dubrulle, B. (1994), Intermittancy in fully developed turbulence: Log Poisson statistics and generalized scale invariance, Phys. Rev. Lett., 73, 959962.
  • Dubrulle, B., and F. Graner (1997), Analogy between scale symmetry and relativistic mechanics, II. Electric analog of turbulence, Phys. Rev. E, 56(6), 64356442.
  • Ellis, R. (1985), Entropy, Large Deviations, and Statistical Mechanics, Springer, New York.
  • Foias, C., O. Manley, R. Rosa, and R. Temam (2001), Navier-Stokes Equations and Turbulence, Encycl. Math. Its Appl., vol. 83, Cambridge Univ. Press, New York.
  • Frisch, U. (1999), Turbulence: The Legacy of Kolmogorov, Cambridge Univ. Press, New York.
  • Gupta, V. K. (2004), Emergence of floods on channel networks from complex runoff dynamics, Chaos Solitons Fractals, 19, 357365.
  • Gupta, V. K., and E. Waymire (1993), A statistical analysis of mesoscale rainfall as a random cascade, J. Appl. Meteorol., 12(2), 251267.
  • Gupta, V. K., and E. Waymire (1997), Scale invariance and regionalization of floods, in Scale Dependence and Scale Invariance in Hydrology, edited by G. Sposito, pp. 88135, Cambridge Univ. Press, New York.
  • Gupta, V. K., and E. Waymire (1998), Some mathematical aspects of rainfall, landforms, floods, in Stochastic Methods in Hydrology: Rain, Landforms and Floods, Adv. Ser. Stat. Sci. Appl. Probab., vol. 7, edited by O. E. Barndorff-Nielsen et al., pp. 129172, World Sci., Hackensack, N. J.
  • Holley, R., and E. Waymire (1992), Multifractal dimensions and scaling exponents for strongly bounded random cascades, Ann. Appl. Probab., 2, 819845.
  • Jouault, B., M. Greiner, and P. Lipa (2000), Fix-point multiplier distributions in discrete turbulent cascade models, Physica D, 136, 196255.
  • Kahane, J. P., and J. Peyrière (1976), Sur certaines martingales de B. Mandelbrot, Adv. Math., 22, 131145.
  • Kolmogorov, A. N. (1941), The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk SSSR, 30, 913.
  • Kolmogorov, A. N. (1962), A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 8285.
  • LeCam, L. (1961), A stochastic description of precipitation, in 4th Berkeley Symposium on Mathematical Statistics,and Probability, vol. 3, pp. 165186, Univ. of Calif., Berkeley.
  • LeJan, Y., and A. S. Sznitman (1997), Stochastic cascades and 3-dimensional Navier-Stokes equations, Probab. Theory Related Fields, 109, 343366.
  • Lovejoy, S. (1982), Area-perimeter relation for rain and cloud areas, Science, 216, 185187.
  • Lovejoy, S., and B. B. Mandelbrot (1985), Fractal properties of rain and a fractal model, Tellus, Ser. A, 37, 209232.
  • Lovejoy, S., and D. Schertzer (1985), Generalized scale invariance in the atmosphere and fractal models of rain, Water Resour. Res., 21(8), 12331250.
  • Lovejoy, S., and D. Schertzer (1990), Multifractals, universality classes, and satellite and radar measurements of cloud and rain fields, J. Geophys. Res., 95(D3), 20212031.
  • Mandelbrot, B. (1974), Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrie, J. Fluid Mech., 62, 331333.
  • Molchan, G. M. (1997), Turbulent cascades: Limitations and a statistical test of the lognormal hypothesis, Phys. Fluids, 9, 23872396.
  • Ossiander, M. (2005), A probabilistic representation of solutions to the incompressible Navier-Stokes equations in R3, Probab. Theory Related Fields, 133(2), 267298.
  • Ossiander, M. E., and E. C. Waymire (2000), Statistical estimation theory for multiplicative cascades, Ann. Stat., 28(6), 121.
  • Ossiander, M., and E. Waymire (2002), On estimation theory for multiplicative cascades, Sankhya, Ser. A, 64, 323343.
  • Over, T., and V. K. Gupta (1994), Statistical analysis of meso-scale rainfall: Dependence of a random cascade generator on large-scale forcing, J. Appl. Meteorol., 33, 15261542.
  • Padoan, P., S. Boldyrev, W. Langer, and A. Nordlund (2003), Structure function scaling in the Taurus and Perseus molecular cloud complexes, Astrophys. J., 583, 308313.
  • Peyrière, J. (1977), Calculs de Dimensions de Hausdorff, Duke Math. J., 44, 591601.
  • Ramirez, J. M. (2006), Mutiplicative cascades applied to PDE's (two numerical examples), J. Comput. Phys., 214, 122136.
  • Reggiani, P., M. Sivalpalan, S. M. Hassanizadeh, and W. G. Gray (2001), Coupled equations for mass and momentum balance in a stream network: Theoretical derivation and computational experiments, Proc. R. Soc. London, Ser. A, 457, 157189.
  • Richardson, L. F. (1922), Numerical Prediction by Numerical Processes, Cambridge Univ. Press, New York.
  • Rodriquez-Iturbe, I., and A. Rinaldo (1997), Fractal River Networks: Chance and Self-Organization, Cambridge Univ. Press, New York.
  • Rodriquez-Iturbe, I., M. Marani, P. D'Odorico, and A. Rinaldo (1998), On space-time scaling of cumulated rainfall fields, Water Resour. Res., 34(12), 34613469.
  • Rodriguez-Iturbe, I., P. D'Odorico, and A. Rinaldo (1998b), A Possible Self-Organizing Dynamics for Land-Atmosphere Interaction, J. Geophys. Res., 103(D18), 23,07132,077.
  • Schertzer, D., S. Lovejoy, D. Lavalle'e, and F. Schmitt (1991), Universal hard multifractal turbulence, theory and observations, in Nonlinear Dynamics of Structures, edited by R. Z. Sagdeev et al., pp. 213235, World Sci., Hackensack, N. J.
  • She, Z. S., and E. Leveque (1994), Universal scaling laws in fully developed turbulence, Phy. Rev. Lett., 72, 336339.
  • She, Z. S., and E. Waymire (1994), Log Poisson statistics in fully developed turbulence, MSRI Ser. 046-94, Math. Sci. Res. Inst., Berkeley, Calif.
  • She, Z. S., and E. Waymire (1995), Quantized energy cascade and logPoisson statistics in fully developed turbulence, Phys. Rev. Lett., 74, 262265.
  • Troutman, B., and A. Vecchia (1999), Estimation of Renyi exponents in random cascades, Bernoulli, 5, 191207.
  • Vainshtein, S. I., and K. R. Sreenivasan (2004), Structure of the most singular vortices in fully developed turbulence, Rep. arXiv:physics/0407068, 5 pp., arXiv, Ithaca, N. Y.
  • Veitzer, S. A., B. M. Troutman, and V. K. Gupta (2003), Power-law tail probabilities of drainage areas in river basins, Phys. Rev. E, 68(1), 016123, doi:10.1103/PhysRevE.68.016123.
  • von Neumann, J. (1960), Some remarks on the problem of forecasting climatic fluctuations, in Dynamics of Climate, edited by R. L. Preffer, pp. 911, Elsevier, New York.
  • Waymire, E. C. (2005), Probability and incompressible Navier-Stokes equations: An overview of some recent developments, Probab. Surv., 2, 132.
  • Waymire, E., and S. C. Williams (1994), A general decomposition theory for random cascades, Bull. Am. Math. Soc., 31, 216222.
  • Waymire, E., and S. C. Williams (1995), Multiplicative cascades: Dimension spectra and dependence, J. Fourier Anal. Appl., 348, 589609.
  • Waymire, E., and S. C. Williams (1996), A cascade decomposition theory with applications to Markov and exchangeable cascades, Trans. Am. Math. Soc., 348(2), 585632.
  • Yaglom, A. M. (1966), The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial range, Sov. Phys. Dokl., Engl. Transl., 2, 2629.