SEARCH

SEARCH BY CITATION

References

  • Albertson, J. D., and M. B. Parlange (1999), Surface length-scales and shear stress: Implications for land-atmosphere interaction over complex terrain, Water Resour. Res., 35, 21212132.
  • Albertson, J. D., and M. B. Parlange (2000), Natural integration of scalar fluxes from complex terrain, Adv. Water Resour., 23, 239252.
  • André, J. C., and L. Mahrt (1982), The nocturnal surface inversion and influence on clear-air radiative cooling, J. Atmos. Sci., 39(4), 864878.
  • André, J. C., G. de Moor, P. Lacarrére, G. Therry, and R. du Vachat (1978), Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer, J. Atmos. Sci., 35, 18611883.
  • Andrén, A., A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann (1994), Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes, Q. J. R. Meteorol. Soc., 120, 14571484.
  • Antonopoulos-Domis, M. (1981), Large-eddy simulation of a passive scalar in isotropic turbulence, J. Fluid Mech., 104, 5579.
  • Beare, R. J., and M. K. MacVean (2004), Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer, Boundary Layer Meteorol., 112, 257281.
  • Blackadar, A. K. (1957), Boundary layer wind maxima and their significance for the growth of nocturnal inversions, Bull. Am. Meteorol. Soc., 38, 283290.
  • Bou-Zeid, E., C. Meneveau, and M. B. Parlange (2004), Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness, Water Resour. Res., 40, W02505, doi:10.1029/2003WR002475.
  • Bou-Zeid, E., C. Meneveau, and M. B. Parlange (2005), A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows, Phys. Fluids, 17(2), 025105.
  • Brown, A. R., P. J. Mason, and S. H. Derbyshire (1994), Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model, Q. J. R. Meteorol. Soc., 120, 14851512.
  • Brown, A. R., et al. (2002), Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land, Q. J. R. Meteorol. Soc., 128(582), 10751093.
  • Brutsaert, W. (1982), Evaporation Into the Atmosphere: Theory, History and Applications, 299 pp., Springer, New York.
  • Businger, J. A. (1982), Equations and concepts, in Atmospheric Turbulence and Air Pollution Modelling, edited by F. T. M. Nieuwstadt, and H. van Dop, pp. 133, Springer, New York.
  • Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang (1988), Spectral Methods in Fluid Dynamics, Springer, New York.
  • Caughey, S. J. (1977), Boundary layer turbulence spectra in stable conditions, Boundary Layer Meteorol., 11, 314.
  • Cheng, Y., and W. Brutsaert (2005), Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer, Boundary Layer Meteorol., 114, 519538.
  • Chlond, A., F. Muller, and I. Sednev (2004), Numerical simulation of the diurnal cycle of marine stratocumulus during FIRE—An LES and SCM modelling study, Q. J. R. Meteorol. Soc., 130(604), 32973321.
  • Deardorff, J. W. (1972), Numerical investigation of neutral and unstable planetary boundary layers, J. Atmos. Sci., 29, 91115.
  • Deardorff, J. W. (1974), Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer, Boundary Layer Meteorol., 7, 81106.
  • Derbyshire, S. H. (1990), Nieuwstadt's stable boundary layer revisited, Q. J. R. Meteorol. Soc., 116, 127158.
  • Derbyshire, S. H. (1999), Stable boundary-layer modelling: Established approaches and beyond, Boundary Layer Meteorol., 90, 423446.
  • Duynkerke, P. G., et al. (2004), Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case, Q. J. R. Meteorol. Soc., 130(604), 32693296.
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot (1991), A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 17601765.
  • Grant, A. L. M. (1997), An observational study of the evening transition boundary layer, Q. J. R. Meteorol. Soc., 123, 657677.
  • Grimsdell, A. W., and W. M. Angevine (2002), Observations of the afternoon transition of the convective boundary layer, J. Appl. Meteorol., 41(1), 311.
  • Hicks, B. B. (1976), Wind profile relationships from the Wangara experiments, Q. J. R. Meteorol. Soc., 102, 535551.
  • Hogstrom, U. (1987), Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation, Boundary Layer Meteorol., 42, 5578.
  • Holtslag, A. A. M., and H. A. R. De Bruin (1988), Applied modeling of the nighttime surface energy balance over land, J. Appl. Meteorol., 27, 689704.
  • Holtslag, A. A. M., and F. T. M. Nieuwstadt (1986), Scaling the atmospheric boundary layer, Boundary Layer Meteorol., 36, 201209.
  • Horst, T. W., J. Kleissl, D. H. Lenschow, C. Meneveau, C. H. Moeng, M. B. Parlange, P. P. Sullivan, and J. C. Weil (2004), HATS: Field observations to obtain filtered fields from crosswind arrays of sonic anemometers in the atmospheric surface layer, J. Atmos. Sci., 61, 15661581.
  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings (1976), Turbulence structure in the convective boundary layer, J. Atmos. Sci., 33, 21522169.
  • Kang, H. S., and C. Meneveau (2002), Universality of large eddy simulation model parameters across a turbulent wake behind a heated cylinder, J. Turbulence, 3, pap. 32, doi:10.1088/1468-5248/3/1/032.
  • Khanna, S., and J. G. Brasseur (1997), Analysis of Monin-Obukhov similarity from large-eddy simulation, J. Fluid Mech., 345, 251286.
  • Kleissl, J., C. Meneveau, and M. B. Parlange (2003), On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer, J. Atmos. Sci., 60, 23722388.
  • Kleissl, J., M. B. Parlange, and C. Meneveau (2004), Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer, J. Atmos. Sci., 61, 22962307.
  • Kleissl, J., V. Kumar, C. Meneveau, and M. B. Parlange (2006), Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions, Water Resour. Res., doi:10.1029/2005WR004685, in press.
  • Kosović, B., and J. A. Curry (2000), A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer, J. Atmos. Sci., 57, 10571068.
  • Landau, L. D., and E. M. Lifshitz (1959), Fluid Mechanics, Course Theor. Phys., vol. 6, 532 pp., Addison-Wesley, Boston, Mass.
  • Lesieur, M., and O. Métais (1996), New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid Mech., 28, 4582.
  • Lilly, D. K. (1967), The representation of small-scale turbulence in numerical simulation experiments, in Proceedings of IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, NY, pp. 195210, IBM Data Process. Div., White Plains, N. Y.
  • Mahrt, L. (1999), Stratified atmospheric boundary layers, Boundary Layer Meteorol., 90, 375396.
  • Mason, P. J. (1989), Large-eddy simulation of the convective atmospheric boundary layer, J. Atmos. Sci., 46, 14921516.
  • Mason, P. J., and S. H. Derbyshire (1990), Large eddy simulation of the stably-stratified atmospheric boundary layer, Boundary Layer Meteorol., 53, 117162.
  • Meneveau, C., T. Lund, and W. Cabot (1996), A Lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech., 319, 353385.
  • Moeng, C.-H. (1984), A large-eddy simulation model for the study of planetary boundary-layer turbulence, J. Atmos. Sci., 41, 20522062.
  • Nieuwstadt, F. T. M. (1984), Some aspects of the turbulent stable boundary-layer, Boundary Layer Meteorol., 30, 3155.
  • Nieuwstadt, F. T. M., and R. A. Brost (1986), The decay of convective turbulence, J. Atmos. Sci., 43, 532546.
  • Nieuwstadt, F. T. M., P. J. Mason, C.-H. Moeng, and U. Schumann (1991), Large-eddy simulation of the convective boundary layer: A comparison of four computer codes, Turbulent Shear Flows, 8, 343367.
  • Orszag, S. (1970), Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation, J. Atmos. Sci., 27, 890895.
  • Orszag, S., and Y. Pao (1974), Numerical computation of turbulent shear flows, Adv. Geophys., 18A, 224236.
  • Pope, S. B. (2000), Turbulent Flows, Cambridge Univ. Press, New York.
  • Porté-Agel, F. (2004), A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer, Boundary Layer Meteorol., 112, 81105.
  • Porté-Agel, F., C. Meneveau, and M. B. Parlange (2000a), A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer, J. Fluid Mech., 415, 261284.
  • Porté-Agel, F., M. B. Parlange, C. Meneveau, W. Eichinger, and M. Pahlow (2000b), Subgrid-scale dissipation in the atmospheric surface layer: Effects of stability and filter dimension, J. Hydrometeorol., 1, 7587.
  • Porté-Agel, F., M. Pahlow, C. Meneveau, and M. Parlange (2001), Atmospheric stability effect on subgrid-scale physics of large-eddy simulation, Adv. Water Resour., 24, 10851102.
  • Povitsky, A., and P. J. Morris (2000), A higher-order compact method in space and time based on parallel implementation of the Thomas algorithm, J. Comput. Phys., 161(1), 182203.
  • Saiki, E., C.-H. Moeng, and P. Sullivan (2000), Large-eddy simulation of the stably stratified planetary boundary layer, Boundary Layer Meteorol., 95, 130.
  • Schmidt, H., and U. Schumann (1989), Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech., 200, 511562.
  • Smagorinsky, J. (1963), General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev., 91, 99164.
  • Smedman, A.-S. (1990), Some turbulence characteristics in the stable atmospheric boundary layer, J. Atmos. Sci., 48, 856868.
  • Sorbjan, Z. (1997), Decay of convective turbulence revisited, Boundary Layer Meteorol., 82, 501515.
  • Stoll, R., and F. Porté-Agel (2006), Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain, Water Resour. Res., 42, W01409, doi:10.1029/2005WR003989.
  • Stull, R. B. (1997), An Introduction to Boundary Layer Meteorology, Springer, New York.
  • Sun, W.-Y., and Y. Ogura (1980), Modeling the evolution of the convective boundary layer, J. Atmos. Sci., 37, 15581572.
  • Tennekes, H., and J. L. Lumley (1972), A First Course in Turbulence, MIT Press, Cambridge, Mass.
  • Van Ulden, A. P., and J. Wieringa (1996), Atmospheric boundary layer research at Cabauw, Boundary Layer Meteorol., 78, 3969.
  • Willis, G. E., and J. W. Deardorff (1974), A laboratory model of the unstable planetary boundary layer, J. Atmos. Sci., 31(5), 12971307.
  • Yamada, T., and G. L. Mellor (1975), A simulation of the Wangara atmospheric boundary layer data, J. Atmos. Sci., 32, 23092329.