SEARCH

SEARCH BY CITATION

References

  • Beck, M. B. (1987), Water quality modeling: A review of the analysis of uncertainty, Water Resour. Res., 23, 13931442.
  • Beck, M. B. (1994), Understanding uncertain environmental systems, in Predictability and Nonlinear Modelling in Natural Sciences and Economics, edited by J. Grasman, and G. van Straten, pp. 294311, Springer, New York.
  • Beck, M. B. (Ed.) (2002), Environmental Foresight and Models: A Manifesto, 473 pp., Elsevier, New York.
  • Beck, M. B. (2005), Environmental foresight and structural change, Environ. Modell. Software, 20, 651670, doi:10.1016/j.envsoft.2004.04.005.
  • Beck, M. B., and P. C. Young (1976), Systematic identification of DO-BOD model structure, J. Environ. Eng. Div. Am. Soc. Civ. Eng., 102, 909927.
  • Beck, M. B., F. M. Kleissen, and H. S. Wheater (1990), Identifying flow paths of models of surface water acidification, Rev. Geophys., 28, 207230.
  • Beck, M. B., J. D. Stigter, and D. Lloyd Smith (2002), Elasto-plastic deformation of structure, in Environmental Foresight and Models: A Manifesto, edited by M. B. Beck, pp. 323350, Elsevier, New York.
  • Beven, K. J. (2002), Uncertainty and the detection of structural change in models of environmental systems, in Environmental Foresight and Models: A Manifesto, edited by M. B. Beck, pp. 227250, Elsevier, New York.
  • Beven, K. J. (2005), On the concept of model structure error, Water Sci. Technol., 52, 167175.
  • Bowie, G. L., W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. H. Chan, and S. A. Gherini (1985), Rates, constants, and kinetics formulations in surface water quality modeling, Rep. EPA/600/3-85/040, 455 pp., Environ. Protect. Agency, Washington, D. C.
  • Chen, J., and M. B. Beck (2002), Detecting and forecasting growth in the seeds of change, in Environmental Foresight and Models: A Manifesto, edited by M. B. Beck, pp. 351373, Elsevier, New York.
  • Drécourt, J.-P., H. Madsen, and D. Rosbjerg (2006a), Bias aware Kalman filters: Comparison and improvements, Adv. Water Resour., 29, 707718.
  • Drécourt, J.-P., H. Madsen, and D. Rosbjerg (2006b), Calibration framework for a Kalman filter applied to a groundwater model, Adv. Water Resour., 29, 719734.
  • Duan, Q. Y., S. Sorooshian, and V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall runoff models, Water Resour. Res., 28, 10151031.
  • Gupta, H. V., S. Sorooshian, and P. O. Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34, 751763.
  • Jazwinski, A. H. (1970), Stochastic Processes and Filtering Theory, Math. Sci. Eng., vol. 64, Elsevier, New York.
  • Kirchner, J. W., X. Feng, C. Neal, and A. J. Robson (2004), The fine structure of water-quality dynamics: The (high-frequency) wave of the future, Hydrol. Processes, 18, 13531359.
  • Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233241.
  • Lin, Z. (2003), Modeling environmental systems under uncertainty: Towards a synthesis of data-based and theory-based models, Ph.D. dissertation, 209 pp., Univ. of Ga., Athens.
  • Lin, Z., and M. B. Beck (2006), Towards a synthesis of data-based and theory-based models of environmental systems, Water Sci. Technol., 53, 101108.
  • Lin, Z., and M. B. Beck (2007), Understanding complex environmental systems: A dual approach, Environmetrics, 18(1), 1126, doi:10.1002/env.799.
  • Ljung, L. (1979), Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE Trans. Autom. Control, 24, 3650.
  • Ljung, L. (1987), System Identification—Theory for the User, 519 pp., Prentice-Hall, Upper Saddle River, N. J.
  • Moradkhani, H., K.-L. Hsu, H. V. Gupta, and S. Sorooshian (2005a), Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter, Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604.
  • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005b), Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28, 135147.
  • Norton, J. P. (1975), Optimal smoothing in the identification of linear time-varying systems, Proc. Inst. Electr. Eng., 122, 663668.
  • Osidele, O. O., and M. B. Beck (2001), Identification of model structure for aquatic ecosystems using regionalized sensitivity analysis, Water Sci. Technol., 43, 271278.
  • Parker, A. K. (2004), The role of iron-rich sediment in the biogeochemical cycling of phosphorus in Georgia piedmont impoundments, Ph.D. dissertation, 119 pp., Univ. of Ga., Athens.
  • Pastres, R., S. Ciavatta, and C. Solidoro (2003), The extended Kalman filter (EKF) as a tool for the assimilation of high-frequency water quality data, Ecol. Modell., 170, 227235.
  • Refsgaard, J. C., J. P. van der Sluijs, J. Brown, and P. van der Keur (2006), A framework for dealing with uncertainty due to model structure error, Adv. Water Resour., 29, 15861597, doi:10.1016/j.advwatres.2005.11.013.
  • Smith, R. M. S., D. J. Evans, and H. S. Wheater (2005), Evaluation of two hybrid metric-conceptual models for simulating phosphorus transfer from agricultural land in the river Enborne, a lowland UK catchment, J. Hydrol., 304, 366380.
  • Stigter, J. D. (1997), The development and application of a continuous-discrete recursive prediction error algorithm in environmental system analysis, Ph.D. dissertation, 130 pp., Univ. of Ga., Athens.
  • Stigter, J. D., and M. B. Beck (1994), A new approach to the identification of model structure, Environmetrics, 5, 315333.
  • Stigter, J. D., and M. B. Beck (2004), On the development and application of a continuous-discrete recursive prediction error algorithm, Math. Biosci., 191, 143158.
  • Thiemann, M., M. Trosset, H. V. Gupta, and S. Sorooshian (2001), Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37, 25212536.
  • Wadsworth, H. M. (Ed.) (1998), Handbook of Statistical Methods for Engineers and Scientists, 2nd ed., McGraw-Hill, New York.
  • Wagener, T., N. McIntyre, M. J. Lees, H. S. Wheater, and H. V. Gupta (2003), Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis, Hydrol. Processes, 17, 455476.
  • Wheater, H. S., K. H. Bishop, and M. B. Beck (1986), The identification of conceptual hydrological models for surface water acidification, Hydrol. Processes, 1, 89109.
  • Young, P. C. (1978), General theory of modelling badly defined systems, in Modelling, Identification and Control in Environmental Systems, edited by G. C. Vansteenkiste, pp. 103135, Elsevier, New York.
  • Young, P. C. (1984), Recursive Estimation and Time Series Analysis: An Introduction, Springer, New York.
  • Young, P. C. (1999), Nonstationary time series analysis and forecasting, Prog. Environ. Sci., 1, 348.
  • Young, P. C. (2000), Stochastic, dynamic modelling and signal processing: Time variable and state dependent parameter estimation, in Nonlinear and Nonstationary Signal Processing, edited by W. J. Fitzgerald et al., pp. 74114, Cambridge Univ. Press, New York.
  • Young, P. C. (2001), The identification and estimation of nonlinear stochastic systems, in Nonlinear Dynamics and Statistics, edited by A. I. Mees, pp. 127166, Birkhäuser, Boston, Mass.
  • Zeng, X., T. C. Rasmussen, M. B. Beck, A. K. Parker, and Z. Lin (2006), A biogeochemical model for metabolism and nutrient cycling in a southeastern piedmont impoundment, Environ. Modell. Software, 21, 10731095, doi:10.1016/j.envsoft.2005.05.009.