SEARCH

SEARCH BY CITATION

References

  • Abbott, M. B., V. M. Babovic, and J. A. Cunge (2003), Towards the hydraulics of the hydroinformatics era by M. B. Abbott, V. M. Babovic and J. A. Cunge, J. Hydraul. Res., Volume 39 2001, Issue 4, pp. 339–349—Response to Beven and Pappenberger, J. Hydraul. Res., 41(3), 331333.
  • Anderson, M. P., and W. W. Woessner (1992), The role of the postaudit in model validation, Adv. Water Resour., 15(3), 167173.
  • Arnell, N. W., E. L. Tompkins, and W. N. Adger (2005), Eliciting information from experts on the likelihood of rapid climate change, Risk Anal., 25(6), 14191431.
  • Beven, K. J. (1989), Changing ideas in hydrology—The case of physically-based models, J. Hydrol., 105(1–2), 157172.
  • Beven, K. J. (2000), Uniqueness of place and process representations in hydrological modelling, Hydrol. Earth Syst. Sci., 4, 203213.
  • Beven, K. J. (2001a), On hypothesis testing in hydrology, Hydrol. Processes, 15(9), 16551657.
  • Beven, K. J. (2001b), Rainfall-Runoff Modelling: The Primer, John Wiley, Hoboken, N. J.,
  • Beven, K. J. (2002a), Towards a coherent philosophy for modelling the environment, Proc. R. Soc. London, Ser. A, 458(2026), 24652484.
  • Beven, K. J. (2002b), Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Processes, 16(2), 189206.
  • Beven, K. J. (2004), Does an interagency meeting near Washington imply uncertainty? Hydrol. Processes, 18(9), 17471750.
  • Beven, K. J. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320(1–2), 1836.
  • Beven, K. J., and F. Pappenberger (2003), Towards the hydraulics of the hydroinformatics era by M. B. Abbott, V. M. Babovic and J. A. Cunge, Journal of Hydraulic Research, Volume 39 2001, Issue 4, pp. 339–349—Discussion, J. Hydraul. Res., 41(3), 331333.
  • Beven, K. J., and P. Young (2003), Comment on “Bayesian recursive parameter estimation for hydrologic models” by M. Thiemann, M. Trosset, H. Gupta, and S. Sorooshian, Water Resour. Res., 39(5), 1116, doi:10.1029/2001WR001183.
  • Brashers, D. E. (2001), Communication and uncertainty management, J. Commun., 51(3), 477497.
  • Cameron, D. (2006), An application of the UKCIP02 climate change scenarios to flood estimation by continuous simulation for a gauged catchment in the northeast of Scotland, UK (with uncertainty), J. Hydrol., in press.
  • Cameron, D., K. J. Beven, and P. Naden (2000), Flood frequency estimation by continuous simulation under climate change (with uncertainty), Hydrol. Earth Syst. Sci., 4(3), 393405.
  • Chèvre, N., and B. Escher (2005), Pesticides, quel risque pour les eaux? EAWAG News, 59, 2023.
  • Cloke, H. L. (2005), Process-based, distributed and terribly uncertain? Using the ESTEL model for hypothesis testing and the investigation of hydrological processes, paper presented at General Assembly, Eur. Geosci. Union, Vienna, 24–29 April.
  • Cloke, H. L., J. P. Renaud, A. J. Claxton, J. McDonnell, M. G. Anderson, J. R. Blake, and P. D. Bates (2003), The effect of model configuration on modelled hillslope-riparian interactions, J. Hydrol., 279(1–4), 167181.
  • Congdon, P. (2005), Bayesian predictive model comparison via parallel sampling, Comput. Stat. Data Anal., 48(4), 735753.
  • de Kort, I. A. T., and M. J. Booij (2006), Decision making under uncertainty in a decision support system for the Red River, Environ. Modell. Software, in press.
  • Demeritt, D. (2001), The construction of global warming and the politics of science, Ann. Assoc. Am. Geogr., 91(2), 307337.
  • Eisner, M., N. Graf, and P. Moser (2003), Risikodiskurse. Die Dynamik öffentlicher Debatten über Umwelt- und Risikoprobleme in der Schweiz, Seismo, Zurich, Switzerland.
  • Ely, A. (2004), Handling uncertainty in scientific advice, report, 4 pp., Parliamentary Off. of Sci. and Technol., London.
  • Fox, C. R., and J. R. Irwin (1998), The role of context in the communication of uncertain beliefs, Basic Appl. Soc. Psychol., 20(1), 5770.
  • Hall, J. W., and M. G. Anderson (2002), Handling uncertainty in extreme or unrepeatable hydrological processes—The need for an alternative paradigm, Hydrol. Processes, 16(9), 18671870.
  • Hall, J. W., E. Rubio, and M. G. Anderson (2004), Random sets of probability measures in slope hydrology and stability analysis, Z. Angew. Math. Mech., 84(10–11), 710720.
  • Harvey, H., J. Hall, P. D. Bates, G. Pender, N. G. Wright, and D. Mason (2005), Next generation computer modelling for the prediction of flood level and inundation extent: Part 3, modelling framework, technical report, Flood Risk Manage. Res. Consortium, Manchester, U. K.,
  • Intergovernmental Panel on Climate Change (2000), Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, edited by N. Nakicenovic, and R. Swart, Cambridge Univ. Press, New York. (Available at http://www.grida.no/climate/ipcc/emission/).
  • Janssen, P. H. M., A. C. Petersen, J. P. van der Sluijs, J. S. Risbeyc, and J. R. Ravetzd (2004), Towards guidance in assessing and communicating uncertainties, in Sensitivity Analysis of Model Output, edited by K. M. Hanson, and F. M. Hemez, pp. 201210, Los Alamos Natl. Lab., Los Alamos, N. M. (Available at http://library.lanl.gov/ccw/samo2004/).
  • Klemeš, V., and C. D. Sellars (2000), Common Sense and Other Heresies: Selected Papers on Hydrology and Water Resources Engineering, 378 pp., Can. Water Resour. Assoc., Cambridge, Ont.,
  • Konikow, L. F., and J. D. Bredehoeft (1992), Groundwater models cannot be validated, Adv. Water Resour., 15(1), 7583.
  • Lemos, M. C., T. J. Finan, R. W. Fox, D. R. Nelson, and J. Tucker (2002), The use of seasonal climate forecasting in policymaking: Lessons from northeast Brazil, Clim. Change, 55(4), 479507.
  • Luseno, W. K., J. G. McPeak, C. B. Barrett, P. D. Little, and G. Gebru (2003), Assessing the value of climate forecast information for pastoralists: Evidence from southern Ethiopia and northern Kenya, World Dev., 31, 14771494.
  • Morgan, M. G., and D. W. Keith (1995), Climate-change—Subjective judgments by climate experts, Environ. Sci. Technol., 29(10), A468A476.
  • Morgan, R. P. (1994), A predictive model for the assessment of soil erosion risk, J. Agric. Eng. Res., 30, 245253.
  • Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994), Verification, validation, and confirmation of numerical-models in the Earth-sciences, Science, 263(5147), 641646.
  • Orr, S., and A. M. Meystel (2005), Approaches to optimal aquifer management and intelligent control in a multiresolutional decision support system, Hydrogeol. J., 31(1), 223246.
  • Otway, H., and D. Vonwinterfeldt (1992), Expert judgment in risk analysis and management—Process, context, and pitfalls, Risk Anal., 12(1), 8393.
  • Pappenberger, F., H. Harvey, K. J. Beven, J. Hall, R. Romanovicz, and P. Smith (2005), Risk & uncertainty: Tools and implementation, report, Flood Risk Manage. Res. Consortium, Manchester, U. K. (Available at http://www.floodrisk.org.uk/images/stories/docs/Implementation_report_risk_uncertainty.pdf).
  • Pappenberger, F., P. Matgen, K. J. Beven, J.-B. Henry, L. Pfister, and P. de Fraipont (2006), Influence of uncertain boundary conditions and model structure on flood inundation predictions, Adv. Water Resour., in press.
  • Parkin, G., G. O'Donnell, J. Ewen, J. C. Bathurst, P. E. O'Connell, and J. Lavabre (1996), Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment, J. Hydrol., 175(1–4), 595613.
  • Pate-Cornell, M. E. (1995), Pobabilistic interpretation of command and control signals: Bayesian updating of the probability of nuclear attack, Reliab. Eng. Syst. Safety, 47(1), 2736.
  • Patt, A., and S. Dessai (2005), Communicating uncertainty: lessons learned and suggestions for climate change assessment, C. R. Geosci., 337(4), 425441.
  • Porter, J. (2005), Communicating uncertainty or uncertainty in communication? Public response to flood risk mapping and warning systems, a case study of Bostcastle and Lynmouth, M.Sc. thesis, King's Coll. London, London.
  • Reichert, P., and M. E. Borsuk (2005), Does high forecast uncertainty preclude effective decision support? Environ. Modell. Software, 20(8), 9911001.
  • Sayers, P. B., B. P. Gouldby, J. D. Simm, I. Meadowcroft, and J. Hall (2002), Risk, performance and uncertainty in flood and coastal defence: A review, DEFRA/EA R&D Tech. Rep. FD2302/TR1, Flood and Coastal Defence R&D Programme, Wallingford, U. K.,
  • Schultz, M. T., M. J. Small, and R. S. Farrow (2005), State water pollution control policy insights from a reduced-form model, J. Water Resour. Plann. Manage., 130(2), 150159.
  • Seibert, J., S. Uhlenbrook, C. Leibundgut, and S. Halldin (2000), Multiscale calibration and validation of a conceptual rainfall-runoff model, Phys. Chem. Earth, Part B, 25(1), 5964.
  • Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian (2001), Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37(10), 25212535.
  • Todini, E. (1999), Using phase-space modelling for inferring forecasting uncertainty in non-linear stochastic decision schemes, J. Hydroinf., 1(2), 7582.
  • U.K. Parliament (1997), Radioactive waste—Where next? report, Parliamentary Off. of Sci. and Technol., London.
  • van der Sluijs, J., et al. (2003), RIVM/MNP guidance for uncertainty assessment and communication, report, Univ. of Utrecht, Utrecht, Netherlands.
  • Wagener, T., and H. V. Gupta (2005), Model identification for hydrological forecasting under uncertainty, Stochastic Environ. Res. Risk Assess., 19, 378387, doi:10.1007/s00477-005-0006-5.
  • Wood, E. F., and I. Rodriguez-Iturbe (1975a), Bayesian approach to analyzing uncertainty among flood frequency models, Water Resour. Res., 11(6), 839843.
  • Wood, E. F., and I. Rodriguez-Iturbe (1975b), Bayesian inference and decision-making for extreme hydrologic events, Water Resour. Res., 11(4), 533542.
  • Yoe, C. E., and L. Skaggs (1997), Risk and uncertainty analysis procedures for the evaluation of environmental outputs, IWR Rep. 97-R-7, Inst. for Water Resour., U.S. Army Corps of Eng., Alexandria, Va. (Available at http://www.iwr.usace.army.mil/iwr/pdf/97r07.pdf).
  • Young, P. C., A. Chotai, and K. J. Beven (2004), Data-based mechanistic modelling and the simplification of environmental systems, in Environmental Modelling: Finding Simplicity in Complexity, edited by J. Wainwright, and M. Mulligan, pp. 371388, John Wiley, Hoboken, N. J.,