The Aerosol Robotic Network (AERONET), originally developed to evaluate aerosol optical properties and validate satellite retrievals of those properties at various scales with measurements from worldwidedistributed autonomous Sun photometers [Holben et al., 1998],since January 2006 has been extended to support marine remote sensing and monitoring applications. This new network component, called AERONETOcean Color (AERONET-OC), provides the additional capability of measuring the radiance emerging from the sea—the ‘water-leaving radiance’—with modified Sun photometers installed on offshore platforms such as lighthouses, oceanographic towers, and derricks.

AERONET-OC is proving to be instrumental in supporting satellite ocean color validation activities through standardized measurements performed at different sites with identical measuring systems and protocols, calibrated using a single reference source and method, and processed with the same code. Recent investigations [Zibordi et al., 2006] suggest that in order to generate accurate climate data records from remote sensing data, time series of in situ measurements from a cadre of AERONET-OC sites could play a major role in the assessment and merging of radiometric products from different ocean color missions.