SEARCH

SEARCH BY CITATION

References

  • Adams, B., A. White, and T. M. Lenton (2004), An analysis of some diverse approaches to modelling terrestrial net primary productivity, Ecol. Modell., 177, 353391.
  • Benitez, P. C., I. McCallum, M. Obersteiner, and Y. Yamagata (2007), Global potential for carbon sequestration: Geographical distribution, country risk and policy implications, Ecol. Econ., 60(3), 572583.
  • Bonan, G. B. (2002), Ecological Climatology: Concepts and Applications, 678 pp., Cambridge Univ. Press, New York.
  • Bradford, J. B., J. A. Hicke, and W. K. Lauenroth (2005), The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity, Remote Sens. Environ., 96, 246255.
  • Churkina, G., and S. W. Running (1998), Contrasting climatic controls on the estimated productivity of global terrestrial biomes, Ecosystems, 1, 206215.
  • Churkina, G., S. W. Running, and A. L. Schloss (1999), Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability, Global Change Biol., 5, 4655.
  • Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, and J. Ni (2001a), Measuring net primary production in forests: Concepts and field methods, Ecol. Appl., 11, 356370.
  • Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, J. Ni, and E. A. Holland (2001b), Net primary production in tropical forests: An evaluation and synthesis of existing field data, Ecol. Appl., 11, 371384.
  • Cramer, W., and C. B. Field (1999), Comparing global models of terrestrial net primary productivity (NPP): Introduction, Global Change Biol., 5, IIIIV.
  • Cramer, W., and A. Solomon (1993), Climatic classification and future global redistribution of agricultural lands, Clim. Res., 3, 97110.
  • Cramer, W., B. Moore, and D. Sahagian (1996), Data needs for modelling global biospheric carbon fluxes: Lessons from a comparison of models, IGBP Newsl., 27, 1315.
  • Cramer, W., D. W. Kicklighter, A. Bondeau, B. Moore, C. Churkina, B. Nemry, A. Ruimy, and A. L. Schloss (1999), Comparing global models of terrestrial net primary productivity (NPP): Overview and key results, Global Change Biol., 5, 115.
  • Cramer, W., et al. (2001a), Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373.
  • Cramer, W., R. J. Olson, S. Prince, J. M. O. Scurlock, and Members of the Global Primary Production Data Initiative (2001b), Determining present patterns of global productivity, in Terrestrial Global Productivity, edited by J. Roy, B. Saugier, and H. A. Mooney, pp. 429448, Academic Press, San Diego, Calif.
  • DeFries, R. S., C. B. Field, I. Fung, G. J. Collatz, and L. Bounoua (1999), Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity, Global Biogeochem. Cycles, 13, 803815.
  • Foley, J. A. (1994), Net primary productivity in the terrestrial biosphere: The application of a global model, J. Geophys. Res., 99, 20,77320,783.
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine (1996), An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cycles, 10, 603628.
  • Goetz, S. J., and S. D. Prince (1996), Remote sensing of net primary production in boreal forest stands, Agric. For. Meteorol., 78, 149179.
  • Gower, S. T., C. J. Kucharik, and J. M. Norman (1999), Direct and indirect estimation of leaf area index, f (APAR), and net primary production of terrestrial ecosystems, Remote Sens. Environ., 70, 2951.
  • Gower, S. T., O. Krankina, R. J. Olson, M. Apps, S. Linder, and C. Wang (2001), Net primary production and carbon allocation patterns of boreal forest ecosystems, Ecol. Appl., 11, 13951411.
  • Haberl, H., et al. (2004), Human appropriation of net primary production and species diversity in agricultural landscapes, Agric. Ecosyst. Environ., 102, 213218.
  • Haxeltine, A., and I. C. Prentice (1996), BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types, Global Biogeochem. Cycles, 10, 693709.
  • Hibbard, K. A., B. E. Law, M. Reichstein, and J. Sulzman (2005), An analysis of soil respiration across Northern Hemisphere temperate ecosystems, Biogeochemistry, 73, 2970.
  • Hicke, J. A., and D. B. Lobell (2004), Spatiotemporal patterns of cropland area and net primary production in the central United States estimated from USDA agricultural information, Geophys. Res. Lett., 31, L20502, doi:10.1029/2004GL020927.
  • Imhoff, M. L., L. Bounoua, T. Ricketts, C. Loucks, R. Harriss, and W. T. Lawrence (2004), Global patterns in human consumption of net primary production, Nature, 429, 870873.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. T. Watson, and D. L. Albritton, 397 pp., Cambridge Univ. Press, New York.
  • Kicklighter, D. W., A. Bondeau, A. L. Schloss, J. Kaduk, and A. D. McGuire (1999), Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes, Global Change Biol., 5, 1624.
  • King, A. W., W. M. Post, and S. D. Wullschleger (1997), The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2, Clim. Change, 35, 199227.
  • Kucharik, C. J., J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe, J. D. Lenters, C. Young-Molling, N. Ramankutty, J. M. Norman, and S. T. Gower (2000), Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure, Global Biogeochem. Cycles, 14, 795825.
  • Lieth, H. (1973), Primary production: Terrestrial ecosystems, Human Ecol., 1, 303332.
  • Lieth, H., and R. H. Whittaker (1975), Primary Productivity of the Biosphere, 339 pp., Springer, New York.
  • Malhi, Y., et al. (2004), The above-ground coarse wood productivity of 104 Neotropical forest plots, Global Change Biol., 10, 563591.
  • McCree, K. J. (1972), The action spectrum, absorption, and quantum yield of photosynthesis in crop plants, Agric. Meteorol., 9, 191216.
  • Meyerson, L. A., J. Baron, J. M. Melillo, R. J. Naiman, R. I. O'Malley, G. Orians, M. A. Palmer, A. S.P. Pfaff, S. W. Running, and O. E. Sala (2005), Aggregate measures of ecosystem services: Can we take the pulse of nature? Front. Ecol. Environ., 3, 5659.
  • Montieth, J. (1972), Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 9, 747766.
  • Montieth, J. (1977), Climate and efficiency of crop production in Britain, Philos. Trans. R. Soc., Ser. B, 281, 277294.
  • New, M., D. Lister, M. Hulme, and I. Makin (2002), A high-resolution data set of surface climate over global land areas, Clim. Res., 21, 125.
  • Olson, R. J., K. Johnson, D. L. Zheng, and J. M. O. Scurlock (2001), Global and regional ecosystem modeling: Databases of model drivers and validation measurements, ORNL/TM-2001/196, 95 pp., Environ. Sci. Div., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Post, W. M., A. W. King, and S. D. Wullschleger (1997), Historical variations in terrestrial biospheric carbon storage, Global Biogeochem. Cycles, 11, 99109.
  • Prentice, I. C., M. T. Sykes, and W. Cramer (1993), A simulation-model for the transient effects of climate change on forest landscapes, Ecol. Modell., 65, 5170.
  • Prince, S. D., J. Haskett, M. Steininger, H. Strand, and R. Wright (2001), Net primary production of US Midwest croplands from agricultural harvest yield data, Ecol. Appl., 11, 11941205.
  • Ramankutty, N., and J. A. Foley (1999), Estimating historical changes in global land cover: Croplands from 1700 to 1992, Global Biogeochem. Cycles, 13, 9971027.
  • Ramankutty, N., J. A. Foley, J. Norman, and K. McSweeney (2002), The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change, Global Ecol. Biogeogr., 11, 377392.
  • Rosenzweig, M. (1968), Net primary production of terrestrial communities: Prediction from climatological data, Am. Nat., 102, 6773.
  • Roxburgh, S. H., et al. (2004), A critical overview of model estimates of net primary productivity for the Australian continent, Funct. Plant Biol., 31, 10431059.
  • Roxburgh, S. H., S. L. Berry, T. N. Buckley, B. Barnes, and M. L. Roderick (2005), What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production, Funct. Ecol., 19, 378382.
  • Ruimy, A., L. Kergoat, and A. Bondeau (1999), Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency, Global Change Biol., 5, 5664.
  • Running, S. W., R. R. Nemani, F. A. Heinsch, M. S. Zhao, M. Reeves, and H. Hashimoto (2004), A continuous satellite-derived measure of global terrestrial primary production, Bioscience, 54, 547560.
  • Schlapfer, F., and B. Schmid (1999), Ecosystem effects of biodiversity: A classification of hypotheses and exploration of empirical results, Ecol. Appl., 9, 893912.
  • Scurlock, J. M.O., W. Cramer, R. J. Olson, W. J. Parton, and S. D. Prince (1999), Terrestrial NPP: Toward a consistent data set for global model evaluation, Ecol. Appl., 9, 913919.
  • Scurlock, J. M.O., K. Johnson, and R. J. Olson (2002), Estimating net primary productivity from grassland biomass dynamics measurements, Global Change Biol., 8, 736753.
  • Sitch, S., et al. (2003), Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9, 161185.
  • Steffen, W., et al. (1998), The terrestrial carbon cycle: Implications for the Kyoto Protocol, Science, 280, 13931394.
  • Stephenson, N. L. (1990), Climatic control of vegetation distribution—The role of the water-balance, Am. Nat., 135, 649670.
  • Stephenson, N. L. (1998), Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales, J. Biogeogr., 25, 855870.
  • Turner, D. P., et al. (2005), Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring, Global Change Biol., 11, 666684.
  • Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo (1997), Human domination of Earth's ecosystems, Science, 277, 494499.
  • Whittaker, R. H., and G. E. Likens (1975), Primary production: The biosphere and man, in Primary Productivity of the Biosphere, edited by H. Lieth, and R. Whittaker, pp. 305328, Springer, Berlin.
  • Zhao, M. S., F. A. Heinsch, R. R. Nemani, and S. W. Running (2005), Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sens. Environ., 95, 164176.