SEARCH

SEARCH BY CITATION

References

  • Anderson, L. A., and J. L. Sarmiento (1994), Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8(1), 6580.
  • Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham (2002), A new, mechanistic model for organic carbon fluxes in the ocean, based on the quantitative association of POC with ballast minerals, Deep Sea Res., Part II, 49, 219236.
  • Barber, R. T. (1992), Introduction to the WEC88 cruise: An investigation into why the equatorial is not greener, J. Geophys. Res., 97, 609610.
  • Barber, R. T., and M. R. Hiscock (2006), A rising tide lifts all phytoplankton: Growth response of other phytoplankton taxa in diatom-dominated blooms, Global Biogeochem. Cycles, 20, GB4S03, doi:10.1029/2006GB002726.
  • Barber, R. T., F. Chai, S. T. Lindley, and R. R. Bidigare (1996), Regulation of equatorial primary production, in Global Fluxes of Carbon and Related Substances in the Coastal Sea-Ocean-Atmosphere System, edited by I. Koike, pp. 283290, Sci. Counc. of Jpn., Tokyo.
  • Bidigare, R. R., and M. E. Ondrusek (1996), Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean, Deep Sea Res., Part II, 43, 809833.
  • Boyd, P. W., et al. (2000), A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695702.
  • Brzezinski, M. A., and D. N. M. Nelson (1995), The annual silica cycle in the Sargasso Sea near Bermuda, Deep Sea Res., Part I, 42, 12151237.
  • Buesseler, K. O., and P. W. Boyd (2003), Will ocean fertilization work? Science, 300, 6768.
  • Chai, F., S. T. Lindley, and R. T. Barber (1996), Origin and maintenance of a high NO3 condition in the equatorial Pacific, Deep Sea Res., Part II, 43, 10311064.
  • Chai, F., S. T. Lindley, J. R. Toggweiler, and R. T. Barber (1999), Testing the importance of iron and grazing in the maintenance of the high nitrate condition in the equatorial Pacific Ocean, a physical-biological model study, in The Changing Ocean Carbon Cycle, Int. Geosphere-Biosphere Programme Book Ser., vol. 5, edited by R. B. Hanson, H. W. Ducklow, and J. G. Field, pp. 156186, Cambridge Univ. Press, New York.
  • Chai, F., R. C. Dugdale, T.-H. Peng, F. P. Wilkerson, and R. T. Barker (2002), One dimensional ecosystem model of the Equatorial Pacific Upwelling System, Part I: Model development and silicon and nitrogen cycle, Deep Sea Res., Part II, 49, 27132745.
  • Chai, F., M. Jiang, R. T. Barber, R. C. Dugdale, and Y. Chao (2003), Interdecadal variation of the transition zone chlorophyll front: A physical-biological model simulation between 1960 and 1990, J. Oceanogr., 59, 461475.
  • Charette, M. A., and K. O. Buesseler (2000), Does iron fertilization lead to rapid carbon export in the Southern Ocean? Geochem. Geophys. Geosyst., 1(10), doi:10.1029/2000GC000069.
  • Chavez, F. P., K. R. Buck, K. H. Coale, J. H. Martin, G. R. DiTullio, N. A. Welshmeyer, A. C. Jacobson, and R. T. Barber (1991), Growth rates, grazing, sinking and iron limitation of equatorial Pacific phytoplankton, Limnol. Oceanogr., 36, 18161833.
  • Chavez, F. P., K. R. Buck, S. K. Service, J. Newton, and R. T. Barber (1996), Phytoplankton variability in the central and eastern tropical Pacific, Deep Sea Res., Part II, 43, 835870.
  • Coale, K. H., et al. (1996), A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean, Nature, 383, 495501.
  • Conkright, M. E., et al. (1998), World Ocean Database 1998, CD-ROM data set documentation, Internal Rep. 14, 111 pp., NOAA, Silver Spring, Md.
  • de Baar, H. J. W., et al. (2005), Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment, J. Geophys. Res., 110, C09S16, doi:10.1029/2004JC002601.
  • Denman, K. L., and M. A. Pena (1999), A coupled 1-D biological/physical model of the northeast subarctic Pacific Ocean with iron limitation, Deep Sea Res., Part II, 46, 28772908.
  • Dugdale, R. C., and F. P. Wilkerson (1998), Silicate regulation of new production in the equatorial Pacific upwelling, Nature, 391, 270273.
  • Dugdale, R. C., R. T. Barber, F. Chai, T.-H. Peng, and F. P. Wilkerson (2002), One dimensional ecosystem model of the equatorial Pacific upwelling system, Part II: Sensitivity analysis and comparison with JGOFS EqPac data, Deep Sea Res., Part II, 49, 27462762.
  • Dugdale, R. C., M. Lyle, F. P. Wilkerson, F. Chai, R. T. Barber, T.-H. Peng, and A. G. Wischmeyer (2004), The influence of equatorial diatom processes on Si deposition and atmospheric CO2 cycles at glacial/interglacial timescales, Paleoceanography, 19, PA3011, doi:10.1029/2003PA000929.
  • Dugdale, R. C., F. P. Wilkerson, F. Chai, and R. Feely (2006), Size fractioned nitrogen uptake measurements in the equatorial Pacific and confirmation of the low Si-high nutrient-low chlorophyll condition, Global Biogeochem. Cycles, 21, GB2005, doi:10.1029/2006GB002722.
  • Flynn, K. J., and V. Martin-Jezequel (2000), Modelling Si-N limited growth of diatoms, J. Plankton Res., 22(3), 447472.
  • Franck, V. M., et al. (2000), Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean, Deep Sea Res., Part II, 47, 33153338.
  • Frost, B. W., and N. C. Franzen (1992), Grazing and iron limitation in the phytoplankton stock and nutrient concentration: A chemostat analogue of the Pacific equatorial upwelling zone, Mar. Ecol. Prog. Ser., 83, 291303.
  • Fujii, M., and F. Chai (2005), Effects of biogenic silica dissolution on silicon cycling and export production, Geophys. Res. Lett., 32, L05617, doi:10.1029/2004GL022054.
  • Fujii, M., N. Yoshie, Y. Yamanaka, and F. Chai (2005), Simulated biogeochemical responses to iron enrichments in three high nutrient, low chlorophyll (HNLC) regions, Prog. Oceanogr., 64, 307324, doi:10/1016/j.pocean.2005.02.017.
  • Gnanadesikan, A. (1999), A global model of silicon cycling: Sensitivity to eddy parameterization and dissolution, Global Biogeochem. Cycles, 13(1), 199220.
  • Gnanadesikan, A., J. L. Sarmiento, and R. D. Slater (2003), Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological productivity, Global Biogeochem. Cycles, 17(2), 1050, doi:10.1029/2002GB001940.
  • Hutchins, D. A., and K. W. Bruland (1998), Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime, Nature, 393, 561564.
  • Jiang, M.-S., and F. Chai (2004), Iron and silicate regulation on new and export production in the equatorial Pacific: A physical-biological model study, Geophys. Res. Lett., 31, L07307, doi:10.1029/2003GL018598.
  • Jiang, M.-S., and F. Chai (2005), Physical and biological controls on the latitudinal asymmetry of surface nutrients and pCO2 in the central and eastern equatorial Pacific, J. Geophys. Res., 110, C06007, doi:10.1029/2004JC002715.
  • Jiang, M.-S., F. Chai, R. C. Dugdale, F. Wilkerson, T.-H. Peng, and R. T. Barber (2003), A nitrate and silicate budget in the equatorial Pacific Ocean: A coupled biological-physical model study, Deep Sea Res., Part II, 50, 29712996.
  • Johnson, K. S., J. K. Moore, and W. O. Smith (2002), Workshop highlights iron dynamics in ocean carbon cycle, Eos Trans. AGU, 83(43), 482484.
    Direct Link:
  • Ku, T. L., S. Luo, M. Kusakabe, and J. K. B. Bishop (1995), 228Ra-derived nutrient budgets in the upper equatorial Pacific and the role of “new” silicate in limiting productivity, Deep Sea Res., Part II, 42, 479497.
  • Landry, M. R., J. Constantinou, and J. Kirshtein (1995), Microzooplankton grazing in the central equatorial Pacific during February and August, 1992, Deep Sea Res., Part II, 42, 657672.
  • Landry, M. R., et al. (1997), Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis, Limnol. Oceanogr., 42, 405418.
  • Landry, M. R., et al. (2000), Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean, Mar. Ecol. Prog. Ser., 201, 2742.
  • Law, C. S., A. J. Watson, M. I. Liddicoat, and T. Stanton (1998), Sulphur hexafluoride as a tracer of biogeochemical and physical processes in an open-ocean iron fertilization experiment, Deep Sea Res., Part II, 45, 977994.
  • Levitus, S., and T. P. Boyer (1994), World Ocean Atlas 1994, vol. 4, Temperature, NOAA Atlas NESDIS, vol. 4, 129 pp., NOAA, Silver Spring, Md.
  • Levitus, S., M. E. Conkright, J. L. Reid, R. G. Najjar, and A. Mantyla (1993), Distribution of nitrate, phosphate and silicate in the world oceans, Prog. Oceanogr., 31(3), 245273.
  • Levitus, S., R. Burgett, and T. P. Boyer (1994), World Ocean Atlas 1994, vol. 3, Salinity, NOAA Atlas NESDIS, vol. 3, 111 pp., NOAA, Silver Spring, Md.
  • Li, X., Y. Chao, J. C. McWilliams, and L.-L. Fu (2001), A comparison between two vertical mixing schemes in a Pacific OGCM, J. Clim., 14(7), 13771398.
  • Lindley, S. T., et al. (1995), Phytoplankton photosynthesis parameters along 140°W in the equatorial Pacific, Deep Sea Res., Part II, 42, 441463.
  • Lindley, S. T., and R. T. Barber (1998), Phytoplankton response to natural and artificial iron addition, Deep Sea Res., Part II, 45, 11351150.
  • Martin, J. H. (1990), Glacial-interglacial CO2 change: the iron hypothesis, Paleoceanography, 5(1), 113.
  • Martin, J. H., G. A. Knauer, D. M. Karl, and W. W. Broenkow (1987), VERTEX: Carbon cycling in the northeast Pacific, Deep Sea Res., 34, 267285.
  • Martin, J. H., et al. (1994), Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 371, 123129.
  • Martin-Jezequel, V., M. Hildebrand, and M. A. Brzezinski (2000), Silicon metabolism in diatoms: Implications for growth, J. Phycol., 36, 821840.
  • Monger, B. C., et al. (1997), Frequency response of a simple food-chain model with time-delayed recruitment: Implication for abiotic-biotic coupling, in Structured Population Models in Marine, Terrestrial and Freshwater Systems, edited by S. Tuljapurkar, and H. Caswell, pp. 433450, Chapman and Hall, New York.
  • Nelson, D. M., J. J. Goering, and D. W. Boisseau (1981), Consumption and regeneration of silicic acid in three coastal upwelling systems, in Coastal Upwelling, Coastal Estuarine Stud., vol. 1, edited by F. A. Richards, pp. 242256, AGU, Washington, D. C.
  • Nelson, D. M., P. Treguer, M. A. Brzezinski, A. Leynaert, and B. Queguiner (1995), Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochem. Cycles, 9(3), 359372.
  • Ragueneau, O., et al. (2000), A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26, 317365.
  • Ridgwell, A. J. (2000), Climatic effect of Southern Ocean Fe fertilization: Is the jury still out? Geochem. Geophys. Geosyst., 1(12), doi:10.1029/2000GC000120.
  • Smetacek, V. (1985), The annual cycle of Kiel bight plankton: A long term analysis, Estuaries, 8, 145157.
  • Steinberg, P. A., et al. (1998), Carbonate system response to iron enrichment, Mar. Chem., 62, 3143.
  • Takeda, S. (1998), Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters, Nature, 393, 774776.
  • Tsuda, A., et al. (2003), A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom, Science, 300, 958961.