SEARCH

SEARCH BY CITATION

References

  • Arora, V. K. (1997), Land surface modelling in general circulation models: A hydrological perspective, Ph.D. thesis, Univ. of Melbourne, Melbourne, Australia.
  • Cao, M., K. Gregson, and S. Marshall (1998), Global methane emission from wetlands and its sensitivity to climate change, Atmos. Environ., 32, 32933299.
  • Christensen, T. R., A. Ekberg, L. Ström, M. Mastepanov, N. Panikov, M. Öquist, B. H. Svensson, H. Nykänen, P. J. Martikainen, and H. Oskarsson (2003), Factors controlling large scale variations in methane emissions from wetlands, Geophys. Res. Lett., 30(7), 1414, doi:10.1029/2002GL016848.
  • Clapp, R. B., and G. M. Hornberger (1978), Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601604.
  • Climate Monitoring and Diagnostics Laboratory (2001), GLOBALVIEW–CH4: Cooperative Atmospheric Data Integration Project—Methane [CD-ROM], NOAA, Boulder, Colo. (Also available via anonymous FTP AT ftp.cmdl.noaa.gov, Path ccg/ch4/GLOBALVIEW).
  • Davidson, E. A., L. V. Verchot, J. H. Cattanio, I. L. Ackerman, and J. E. M. Carvalho (2000), Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia, Biogeochemistry, 48, 5369.
  • Del Grosso, S., et al. (2000), General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems, Global Biogeochem. Cycles, 14, 9991019.
  • Dirmeyer, P., and L. Tan (2001), A multi-decadal global land-surface data set of state variables and fluxes, COLA Tech. Rep. 102, 43 pp., Cent. for Ocean-Land-Atmos. Stud., Calverton, Md.
  • Dorr, H., L. Katruff, and I. Levin (1993), Soil texture parameterization of the methane uptake in aerated soils, Chemosphere, 26, 697713.
  • Ehhalt, D., and M. Prather (2001), Atmospheric chemistry and greenhouse gases, in Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., pp. 348416, Cambridge Univ. Press, Cambridge, U.K.
  • Grant, R. F. (1999), Simulation of methanotrophy in the mathematical model ecosys, Soil Biol. Biochem., 31, 287297.
  • Griffin, D. M. (1981), Water and microbial stress, in Advances in Microbial Ecology, edited by M. Alexander, pp. 91136, Plenum, New York.
  • Hanson, R. S., and T. E. Hanson (1996), Methanotrophic bacteria, Microbiol. Rev., 60, 439471.
  • Horz, H.-P., V. Rich, S. Avrahami, and J. M. Bohannan (2005), Methane-oxidizing bacteria in a California upland grassland soil: Diversity and response to simulated global change, Appl. Environ. Microbiol., 71, 26422652.
  • Ishizuka, S., T. Sakata, and K. Ishizuka (2000), Methane oxidation in Japanese forest soils, Soil Biol. Biochem., 32, 769777.
  • Keller, M., E. Veldkamp, A. M. Weitz, and W. A. Reiners (1993), Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica, Nature, 365, 244246.
  • Koschorreck, M., and R. Conrad (1993), Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores, and in soil samples, Global Biogeochem. Cycles, 7, 109121.
  • Kruse, C. W., P. Moldrup, and N. Iversen (1996), Modeling diffusion and reaction in soils. II. Atmospheric methane diffusion and consumption in soils, Soil Sci., 161, 355365.
  • Leemans, R. (1992), Global Holdridge life zone classifications, in Global Ecosystems Database Version 1.0, Disc A, Natl. Geophys. Data Cent., Boulder, Colo.
  • Maljanen, M. (2003), Greenhouse gas dynamics of farmed or forested organic soils in Finland, Ph.D. dissertation, Univ. of Kuopio, Kuopio, Finland.
  • Matthews, E. (1989), Global data bases on distribution, characteristics and methane emission of natural wetlands: Documentation of archived data tape, NASA Tech. Memo., TM-4153.
  • Matthews, E., and I. Fung (1987), Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 6186.
  • Millington, R. J., and R. C. Shearer (1971), Diffusion in aggregated porous media, Soil Sci., 111, 372378.
  • Mosier, A. R., et al. (1991), Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands, Nature, 350, 330333.
  • Mosier, A. R., et al. (1996), CH4 and N2O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition, Global Biogeochem. Cycles, 10, 387399.
  • Potter, C. S., E. A. Davidson, and L. V. Verchot (1996), Estimation of global biogeochemical controls and seasonality in soil methane consumption, Chemosphere, 32, 22192246.
  • Ramankutty, N., and J. A. Foley (1999), Estimating historical changes in global land cover: Croplands from 1700 to 1992, Global Biogeochem. Cycles, 13, 9971027.
  • Ridgwell, A., S. J. Marshall, and K. Gregson (1999), Consumption of atmospheric methane by soils: A process-based model, Global Biogeochem. Cycles, 13, 5970.
  • Savage, K., T. R. Moore, and P. M. Crill (1997), Methane and carbon dioxide exchanges between the atmosphere and northern boreal forest soils, J. Geophys. Res., 102, 29,27929,288.
  • Schnell, S., and G. M. King (1996), Responses of methanotrophic activity in soils and cultures to water stress, Appl. Environ. Microbiol., 62, 32033209.
  • Smith, K. A., et al. (2000), Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink, Global Change Biol., 6, 791803.
  • Steudler, P. A., R. D. Bowden, J. M. Mellilo, and J. D. Aber (1989), Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature, 341, 314316.
  • Streigl, R. G. (1993), Diffusional limits to the consumption of atmospheric methane by soils, Chemosphere, 26, 715720.
  • Streigl, R. G., et al. (1992), Consumption of atmospheric methane by desert soils, Nature, 357, 145147.
  • Torn, M. S., and J. Harte (1996), Methane consumption by montane soils: Implications for positive and negative feedback with climatic change, Biogeochemistry, 32, 5367.
  • Verchot, L. V., E. A. Davidson, J. H. Cattanio, and I. L. Ackerman (2000), Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia, Ecosystems, 3, 4156.
  • Verseghy, D. L. (1991), CLASS—A Canadian land surface scheme for GCMs. I. Soil model, Int. J. Climatol., 11, 111133.
  • Verseghy, D. L. (1996), Local climates simulated by two generations of Canadian GCM land surface schemes, Atmos. Ocean, 34, 435456.
  • Verseghy, D. L., N. A. McFarlane, and M. Lazare (1993), CLASS—A Canadian land surface scheme for GCMs. II. Vegetation model and coupled runs, Int. J. Climatol., 13, 347370.
  • Walter, B. P., and M. Heimann (2000), A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cycles, 14, 745766.
  • Walter, B. P., M. Heimann, and E. Matthews (2001), Modeling modern methane emissions from natural wetlands. 1. Model description and results, J. Geophys. Res., 106, 34,18934,206.
  • Whalen, S. C., and W. S. Reeburgh (1988), A methane flux time series for tundra environments, Global Biogeochem. Cycles, 2, 399409.
  • Whalen, S. C., and W. S. Reeburgh (1996), Moisture and temperature sensitivity of CH4 oxidation in boreal soils, Soil Biol. Biochem., 28, 12711281.
  • Whalen, S. C., W. S. Reeburgh, and V. A. Barber (1992), Oxidation of methane in boreal forest soils: A comparison of seven measures, Biogeochemistry, 16, 181211.
  • Wilson, M. F., and A. Henderson-Sellers (1985), A global archive of land cover and soils data for use in general circulation models, J. Climatol., 5, 119143.
  • Zhuang, Q., J. M. Melillo, D. W. Kicklighter, R. G. Prinn, A. D. McGuire, P. A. Steudler, B. S. Felzer, and S. Hu (2004), Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model, Global Biogeochem. Cycles, 18, GB3010, doi:10.1029/2004GB002239.
  • Zobler, L. (1986), A world soil file for climate modelling, NASA Tech. Memo., TM-87802, 32 pp.