SEARCH

SEARCH BY CITATION

References

  • Algesten, G., S. Sobek, A. K. Bergström, A. Ågren, L. J. Tranvik, and M. Jansson (2003), Role of lakes for organic carbon cycling in the boreal zone, Global Change Biol., 10, 141147.
  • Amon, R. M. W., and R. Benner (1996), Bacterial utilization of different size classes of dissolved organic matter, Limnol. Oceanogr., 41, 4151.
  • Asada, T., and B. G. Warner (2005), Surface peat mass and carbon balance in a hypermaritime peatland, Soil Sci. Soc. Am. J., 69, 549562.
  • Bergström, A. K., and M. Jansson (2000), Bacterioplankton production in humic Lake Örtrasket in relation to input of bacterial cells and input of allochthonous organic carbon, Microbial Ecol., 39, 101115.
  • Bishop, K., J. Seibert, S. Köhler, and H. Laudon (2004), Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry, Hydrol. Process., 18, 185189.
  • Butler, J. H. A., and J. N. Ladd (1969), Effect of extractant and molecular size on the optical and chemical properties of soil humic acids, Aust. J. Soil Res., 7, 229239.
  • Clymo, R. S. (1965), Experiments on breakdown of Sphagnum in two bogs, J. Ecol., 53, 747758.
  • Clymo, R. S., and P. M. Hayward (1982), The ecology of Sphagnum, in Bryophyte Ecol., edited by A. J. E. Smith, pp. 229289, Chapman and Hall, London.
  • Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz (1994), Carbon-dioxide supersaturation in the surface waters of lakes, Science, 265, 15681570.
  • Cole, J. J., S. R. Carpenter, M. L. Pace, M. C. Van de Bogert, J. L. Kitchell, and J. R. Hodgson (2006), Differential support of lake food webs by three types of terrestrial organic carbon, Ecol. Lett., 9, 558568.
  • Cory, N., I. Buffam, H. Laudon, S. Köhler, and K. Bishop (2006), Landscape control of stream water aluminum in a boreal catchment during spring flood, Environ. Sci. Technol., 40, 34943500.
  • Coulson, J. C., and J. Butterfield (1978), An investigation of the biotic factors determining the rates of plant decomposition on Blanket Bog, J. Ecol., 66, 631650.
  • Dahlén, J., S. Bertilsson, and C. Pettersson (1996), Effects of UV-A irradiation on dissolved organic matter in humic surface waters, Environ. Int., 22, 501506.
  • Daniel, C., K. Gutseit, A. M. Anesio, and W. Granéli (2005), Microbial food webs in the dark: independence of lake plankton from recent algal production, Aquat. Microbial Ecol., 38, 113123.
  • Dehaan, H. (1993), Solar UV-light penetration and photodegradation of humic substances in peaty lake water, Limnol. Oceanogr., 38, 10721076.
  • Dehaan, H., and T. Deboer (1987), Applicability of light absorbency and fluorescence as measures of concentration and molecular-size of dissolved organic carbon in humic Lake Tjeukemeer, Water Res., 21, 731734.
  • del Giorgio, P. A., and J. J. Cole (1998), Bacterial growth efficiency in natural aquatic systems, Annu. Rev. Ecol. Syst., 29, 503541.
  • del Giorgio, P. A., J. J. Cole, and A. Cimbleris (1997), Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems, Nature, 385, 148151.
  • Hessen, D. O. (1992), Dissolved organic carbon in a humic lake: Effects on bacterial production and respiration, Hydrobiologia, 229, 115123.
  • Hessen, D. O. (1998), Food webs and carbon cycling in humic lakes, in Aquatic Humic Substances: Ecology and Biochemistry, edited by L. J. Tranvik, and D. O. Hessen, pp. 285315, Springer-Verlag, Berlin.
  • Hessen, D. O. (2006), Determinants of seston C: P-ratio in lakes, Freshwater Biol., 51, 15601569.
  • Hobbie, S. E., J. P. Schimel, S. E. Trumbore, and J. R. Randerson (2000), Controls over carbon storage and turnover in high-latitude soils, Global Change Biol., 6, 196210.
  • Högberg, M. N., and P. Högberg (2002), Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil, New Phytol., 154, 791795.
  • Högberg, P., A. Nordgren, N. Buchmann, A. F. S. Taylor, A. Ekblad, M. N. Högberg, G. Nyberg, M. Ottosson-Löfvenius, and D. J. Read (2001), Large-scale forest girdling shows that current photosynthesis drives soil respiration, Nature, 411, 789792.
  • Höskuldsson, A. (1988), PLS regression methods, J. Chemometrics, 2, 211228.
  • Jansson, M., A. K. Bergström, P. Blomqvist, A. Isaksson, and A. Jonsson (1999), Impact of allochthonous organic carbon on microbial food web carbon dynamics and structure in Lake Örtrasket, Arch. Hydrobiol., 144, 409428.
  • Jansson, M., A. K. Bergström, P. Blomqvist, and S. Drakare (2000), Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes, Ecology, 81, 32503255.
  • Jansson, M., L. Persson, A. M. DeRoos, R. I. Jones, and L. J. Tranvik (2007), Terrestrial carbon and intraspecific size-variation shape lake ecosystems, Trends Ecol. Evol., 22, 316322.
  • Johnson, L. C., and A. W. H. Damman (1991), Species-controlled Sphagnum decay on a south Swedish raised bog, Oikos, 61, 234242.
  • Jones, R. I. (1992), The influence of humic substances on lacustrine planktonic food-chains, Hydrobiologia, 229, 7391.
  • Jones, R. I. (2000), Mixotrophy in planktonic protists: an overview, Freshwater Biol., 45, 219226.
  • Jonsson, A., M. Meili, A. K. Bergström, and M. Jansson (2001), Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örtrasket, N. Sweden), Limnol. Oceanogr., 46, 16911700.
  • Kalbitz, K., S. Solinger, J. H. Park, B. Michalzik, and E. Matzner (2000), Controls on the dynamics of dissolved organic matter in soils: A review, Soil Sci., 165, 277304.
  • Karlsson, J., M. Jansson, and A. Jonsson (2002), Similar relationships between pelagic primary and bacterial production in clearwater and humic lakes, Ecology, 83, 29022910.
  • Kritzberg, E. S., J. J. Cole, M. M. Pace, and W. Granéli (2006), Bacterial growth on allochthonous carbon in humic and nutrient-enriched lakes: Results from whole-lake C-13 addition experiments, Ecosystems, 9, 489499.
  • Kroer, N. (1993), Bacterial growth efficiency on natural dissolved organic matter, Limnol. Oceanogr., 38, 12821290.
  • Laudon, H., S. Köhler, and I. Buffam (2004a), Seasonal TOC export from seven boreal catchments in northern Sweden, Aquat. Sci., 66, 223230.
  • Laudon, H., J. Seibert, S. Köhler, and K. Bishop (2004b), Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff, Water Resour. Res., 40, W03102, doi:10.1029/2003WR002455.
  • Lennon, J. T., and L. E. Pfaff (2005), Source and supply of terrestrial organic matter affects aquatic microbial metabolism, Aquat. Microbial Ecol., 39, 107119.
  • Lindell, M. J., W. Granéli, and L. J. Tranvik (1995), Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter, Limnol. Oceanogr., 40, 195199.
  • Obernosterer, I., and G. J. Herndl (2000), Differences in the optical and biological reactivity of the humic and nonhumic dissolved organic carbon component in two contrasting coastal marine environments, Limnol. Oceanogr., 45, 11201129.
  • Pace, M. L., J. J. Cole, S. R. Carpenter, J. F. Kitchell, J. R. Hodgson, M. C. Van de Bogert, D. L. Bade, E. S. Kritzberg, and D. Bastviken (2004), Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs, Nature, 427, 240243.
  • Palmer, S. M., D. Hope, M. F. Billett, J. J. C. Dawson, and C. L. Bryant (2001), Sources of organic and inorganic carbon in a headwater stream: Evidence from carbon isotope studies, Biogeochemistry, 52, 321338.
  • Raymond, P. A., and C. S. Hopkinson (2003), Ecosystem modulation of dissolved carbon age in a temperate marsh-dominated estuary, Ecosystems, 6, 694705.
  • Schiff, S., R. Aravena, E. Mewhinney, R. Elgood, B. Warner, P. Dillon, and S. Trumbore (1998), Precambrian shield wetlands: Hydrologic control of the sources and export of dissolved organic matter, Clim. Change, 40, 167188.
  • Sherr, E. B., and B. F. Sherr (2002), Significance of predation by protists in aquatic microbial food webs, Antonie Leeuwenhoek, 81, 293308.
  • Smith, D. C., and F. Azam (1992), A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine, Mar. Microbial Food Webs, 6, 107114.
  • Sobek, S., G. Algesten, A. K. Bergström, M. Jansson, and L. J. Tranvik (2003), The catchment and climate regulation of pCO2 in boreal lakes, Global Change Biol., 9, 630641.
  • Stepanauskas, R., H. Laudon, and N. O. G. Jørgensen (2000), High DON bioavailability in boreal streams during a spring flood, Limnol. Oceanogr., 45, 12981307.
  • Strome, D. J., and M. C. Miller (1978), Photolytic changes in dissolved humic substances, Verh. Internat. Verein. Limnol., 20, 12481254.
  • Tadonleke, R. D. (2007), Strong coupling between natural Planctomycetes and changes in the quality of dissolved organic matter in freshwater samples, FEMS Microbiol. Ecol., 59, 543555.
  • Tranvik, L. J. (1998), Degradation of dissolved organic matter in humic waters by bacteria, in Aquatic Humic Substances: Ecology and Biogeochemistry, edited by L. J. Tranvik, and D. O. Hessen, pp. 259283, Springer-Verlag, Berlin.
  • Turetsky, M. R. (2004), Decomposition and organic matter quality in continental peatlands: The ghost of permafrost past, Ecosystems, 7, 740750.
  • van Hees, P. A. W., D. L. Jones, R. Finlay, D. L. Godbold, and U. S. Lundström (2005), The carbon we do not see - the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review, Soil Biol. Biochem., 37, 113.
  • Verhoeven, J. T. A., and W. M. Liefveld (1997), The ecological significance of organochemical compounds in Sphagnum, Acta Bot. Neer., 46, 117130.
  • Verhoeven, J. T. A., and E. Toth (1995), Decomposition of Carex and Sphagnum litter in fens: Effect of litter quality and inhibition by living tissue homogenates, Soil Biol. Biochem., 27, 271275.
  • Wetzel, R. G. (2001), Limnology: Lake and River Ecosystems, 3 ed., 1006 pp., Academic Press, San Diego.