SEARCH

SEARCH BY CITATION

References

  • Adkins, J. F., E. A. Boyle, W. B. Curry, and A. Lutringer (2003), Stable isotopes in deep-sea corals and a new mechanism for “vital effects,”, Geochim. Cosmochim. Acta, 67, 11291143.
  • Beck, J. W., L. Edwards, E. Ito, F. Taylor, J. Recy, F. Rougerie, P. Joannot, and C. Henin (1992), Sea surface temperature from coral strontium-calcium ratios, Science, 257, 644647.
  • Burton, E. A., and L. M. Walter (1987), Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control? Geology, 15, 111114.
  • Cohen, A. L., and T. A. McConnaughey (2003), A geochemical perspective on coral mineralization, in Biomineralization, edited by P. M. Dove, S. Weiner, and J. J. de Yoreo, Rev. Mineral. Geochem., vol. 54, pp. 151187, Mineral. Soc. of Am., Washington, D. C.
  • Cohen, A. L., and R. A. Sohn (2004), Tidal modulation of Sr/Ca ratios in a Pacific reef coral, Geophys. Res. Lett., 31, L16310, doi:10.1029/2004GL020600.
  • Cohen, A. L., K. E. Owens, G. D. Layne, and N. Shimizu (2002), The effect of algal symbiosis on the accuracy of Sr/Ca paleotemperatures from coral, Science, 296(5566), 331333.
  • de Villiers, S., B. K. Nelson, and A. R. Chivas (1995), Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures, Science, 269(5228), 12471249.
  • Gaetani, G. A., and A. L. Cohen (2006), Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies, Geochim. Cosmochim. Acta, 70, 46174634.
  • Haase-Schramm, A., F. Böhm, A. Eisenhauer, W. Dullo, M. M. Joachimski, B. Hansen, and J. Reitner (2003), Sr/Ca ratios and oxygen isotopes from sclerosponges: Temperature history of the Caribbean mixed layer and thermocline during the Little Ice Age, Paleoceanography, 18(3), 1073, doi:10.1029/2002PA000830.
  • Hart, S. R., and A. L. Cohen (1996), Sr/Ca in corals: An ionprobe study of annual cycles and microscale coherence with other trace elements, Geochim. Cosmochim. Acta, 60, 30753084.
  • Kinsman, D. J. J., and H. D. Holland (1969), The co-precipitation of cations with CaCO3–IV. The co-precipitation of Sr2+ with aragonite between 16°C and 96°C, Geochim. Cosmochim. Acta, 33, 117.
  • McConnaughey, T. A. (1989a), 13C and 18O isotopic disequilibrium in biological carbonates. I. Patterns, Geochim. Cosmochim. Acta, 53, 151162.
  • McConnaughey, T. A. (1989b), 13C and 18O isotopic disequilibrium in biological carbonates. II. In vitro simulation of kinetic isotope effects, Geochim. Cosmochim. Acta, 53, 163171.
  • Mikkelson, N., H. Erlenkeuser, J. S. Killingley, and W. H. Berger (1982), Norwegian corals: Radiocarbon and stable isotopes in Lophelia pertusa, Boreas, 11, 164171.
  • Montagna, P., M. McCulloch, M. Taviani, A. Remia, and G. Rouse (2005), High-resolution trace and minor element compositions in deep-water scleractinian corals (Desmophyllum dianthus) from the Mediterranean Sea and Great Australian Bight, in Cold-Water Corals and Ecosystems, edited by A. Freiwald, and J. M. Roberts, pp. 11091126, Springer, New York.
  • Mortensen, P. B., and H. T. Rapp (1998), Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophela pertusia (L) (Anthozoa, Scleractinia): Implications for determinations of linear extension rates, Sarsia, 83, 433446.
  • Shirai, K., M. Kusakabe, S. Nakai, T. Ishii, T. Watanabe, H. Hiyagon, and Y. Sano (2005), Deep-sea coral geochemistry: Implication for the vital effect, Chem. Geol., 224, 212222.
  • Smith, J. E., H. P. Schwarcz, and M. J. Risk (2000), Paleotemperatures from deep-sea corals: Overcoming “vital effects”, Palaios, 15, 2532.
  • Spiro, B., M. Roberts, J. Gage, and S. Chenery (2000), 18O/16O and 13C/12C in ahermatypic deep-sea coral Lophelia pertusa from the North Atlantic: A case of disequilibrium isotope fractionation, Rapid Commun. Mass Spectrom., 14, 13321336.
  • Wainwright, S. (1964), Studies of the mineral phase of coral skeleton, Exp. Cell. Res., 34, 213230.
  • Weber, J. N. (1973), Incorporation of strontium into reef coral skeletal carbonate, Geochim. Cosmochim. Acta, 37, 21732190.
  • Wisshak, M. A., Freiwald, T. Lundalv, and M. Gektidis (2005), The physical niche of the bathyl Lopehlia pertusa in a non-bathyl setting: Environmental controls and palaeoecological implications, in Cold-Water Corals and Ecosystems, edited by A. Freiwald, and J. M. Roberts, pp. 9791001, Springer, New York.