SEARCH

SEARCH BY CITATION

References

  • Allmendinger, R. W., T. E. Jordan, S. M. Kay, and B. L. Isacks (1997), The evolution of the Altiplano-Puna plateau of the central Andes, Annu. Rev. Earth Planet. Sci., 25, 139174.
  • Blisniuk, P. M., L. A. Stern, C. P. Chamberlain, P. K. Zeitler, V. A. Ramos, E. R. Sobel, M. Haschke, M. R. Strecker, and F. Warkus (2006), Links between mountain uplift, climate, and surface processes in the southern Patagonian Andes, in The Andes - Active Subduction Orogeny: Frontiers in Earth Sciences, edited by O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Götze, V. Ramos, M. Strecker, and P. Wigger, Springer Verlag, in press.
  • Bourgois, J., H. Martin, Y. Lagabrielle, J. Le Moigne, and J. Frutos Jara (1996), Subduction erosion related to spreading ridge subduction: Taitao Peninsula (Chile margin triple junction area), Geology, 24, 723726.
  • Donelick, R. A., R. A. Ketcham, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects, Am. Mineral., 84, 12241234.
  • Flint, S. S., D. J. Prior, S. M. Agar, and P. Turner (1994), Stratigraphic and structural evolution of the Tertiary Cosmelli basin and its relationship to the Chile triple junction, J. Geol. Soc., 151, 251268.
  • Folguera, A., and V. A. Ramos (2002), Particion de la deformacion durante el Neogeno en los Andes Patagonicos Septentrionales (37°–46°S), Rev. Soc. Geol. Esp., 15, 8193.
  • Gleadow, A. J., D. X. Belton, B. P. Kohn, and R. W. Brown (2002), Fission track dating of phosphate minerals and the thermochronology of apatite, in Phosphates: Geochemical, Geobiological, and Materials Importance, Rev. Mineral. Geochem., vol. 48, edited by M. J. Kohn, J. Rakovan, and J. M. Hughes, pp. 579630, Mineral. Soc. of Am., Washington, D. C.
  • Gorring, M. L., S. M. Kay, P. K. Zeitler, V. A. Ramos, D. Rubilio, M. I. Fernandez, and J. L. Panza (1997), Neogene Patagonian plateau lavas: Continental magmas associated with ridge collision at the Chile Triple Junction, Tectonics, 16, 117.
  • Green, P. F., I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. Gleadow, and J. F. Lovering (1989), Thermal annealing of fission tracks in apatite, 4. Quantitative modelling techniques and extension to geological timescales, Chem. Geol., 79, 155182.
  • Ketcham, R. A., R. A. Donelick, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales, Am. Mineral., 84, 12351255.
  • Ketcham, R. A., R. A. Donelick, and M. B. Donelick (2000), AFTSolve: A program for multikinetic modeling of apatite fission-track data, Geol. Mater. Res., 2, 132.
  • Murdie, R. E., P. Styles, D. J. Prior, and A. J. Daniel (2000), A new gravity map of southern Chile and its preliminary interpretation, Rev. Geol. Chile, 27(1), 4963.
  • Pankhurst, R. J., S. D. Weaver, F. Hervé, and P. Larrando (1999), Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysén, southern Chile, J. Geol. Soc. London, 156, 673694.
  • Pope, D. C., and S. D. Willet (1998), Thermal mechanical model for crustal thickening in the central Andes driven by ablative subduction, Geology, 26, 511514.
  • Ramos, V. A. (1989), Andean foothills structures in northern Magallanes Basin, Argentina, AAPG Bull., 73, 887903.
  • Ramos, V. A. (2005), Seismic ridge subduction and topography: Foreland deformation in the Patagonian Andes, Tectonophysics, 399, 7386.
  • Ramos, V. A., and S. M. Kay (1992), Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions, Tectonophysics, 205, 261282.
  • Russo, R. M., and P. G. Silver (1996), Cordillera formation, mantle dynamics and the Wilson cycle, Geology, 24, 511514.
  • Skarmeta, J., and J. C. Castelli (1997), Intrusion sintectonica del granito de Las Torres del Paine, Andes Patagonicos de Chile, Rev. Geol. Chile, 24, 5574.
  • Sobel, E. R., and M. R. Strecker (2003), Uplift, exhumation, and precipitation: Tectonic and climatic control of late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina, Basin Res., 15, doi:10.1046/j.1365-2117.2003.00214.x, p. 431451.
  • Suárez, M., and R. De la Cruz (2001), Jurassic to Miocene K-Ar dates from eastern central Patagonian Cordillera plutons, Chile (45°–48°S), Geol. Mag., 138, 5366.
  • Suárez, M., R. De La Cruz, and C. M. Bell (2000), Timing and origin of deformation along the Patagonian fold and thrust belt, Geol. Mag., 137, 345353.
  • Thomson, S. N., F. Hervé, and B. Stöckhert (2001), Mesozoic-Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes, Tectonics, 20, 693711.
  • Warkus, F. (2002), Die neogene Hebungsgeschichte der Patagonischen Anden im Kontext der Subduktion eines aktiven Spreizungszentrums, doctoral thesis, 99 pp., Univ. of Potsdam, Potsdam, Germany.
  • Wdowinski, S., and Y. Bock (1994), The evolution of deformation and tomography of high elevated plateaus: 2. Application to the central Andes, J. Geophys. Res., 99, 71217130.
  • Welkner, D., and M. Suárez (1999), Los plutones del área del Cerro San Lorenzo (47°30°S): Valores K–Ar y Ar–Ar, Actas Congr. Geol. Argent., XIV, 112113.