SEARCH

SEARCH BY CITATION

References

  • Arthur, M. A., W. E. Dean, E. D. Neff, B. J. Hay, J. J. King, and G. Jones (1994), Varve calibrated records of carbonate and organic carbon accumulation over the last 2000 years in the Black Sea, Global Biogeochem. Cycles, 8, 195217.
  • Backman, J., K. Moran, D. B. McInroy, L. A. Mayer, and the Expedition 302 Scientists (2006), Proceedings of the Ocean Drilling Program, vol. 302, Ocean Drill. Program, College Station Tex. (Available at http://www.ecord.org/exp/acex/vol302/104/104_.htm).
  • Brinkhuis, H., et al. (2006), Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 441, 606609.
  • Clark, D. L., C. W. Byers, and L. M. Pratt (1986), Cretaceous black mud from the central Arctic Ocean, Paleoceanography, 1(3), 265271.
  • Dean, W. E., and M. A. Arthur (1999), Sensitivity of the North Atlantic basin to cyclic climatic forcing during the early Cretaceous, J. Foraminiferal Res., 29(4), 465486.
  • Dean, W. E., M. A. Arthur, and G. E. Claypool (1986), Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental signal? Mar. Geol., 70, 119157.
  • Dickens, G. R., J. R. O'Neil, D. K. Rea, and R. M. Owen (1995), Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965971.
  • Fuhrmann, A., J. Mingram, A. Lücke, H. Lu, B. Horsfield, J. Liu, J. F. W. Negendank, G. H. Schleser, and H. Wilkes (2003), Variations in organic matter composition in sediments from Lake Huguang Maar (Huguangyan), S-China during the last 68 ka: Implications for environmental and climatic change, Org. Geochem., 34, 14971515.
  • Goericke, R., and B. Fry (1994), Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean, Global Biogeochem. Cycles, 8, 8590.
  • Hayes, J. M., H. Strauss, and A. J. Kaufman (1999), The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chem. Geol., 161, 103125.
  • Jackson, H. R., P. J. Mudie, and S. M. Blasco (1985), Initial geological report on CESAR—The Canadian Expedition to study the Alpha Ridge, Arctic Ocean, Pap. Geol. Surv. Can., 84–22, 177 pp.
  • Jenkyns, H. C., A. Forster, S. Schouten, and J. S. Sinninghe Damsté (2004), High temperatures in the late Cretaceous Arctic Ocean, Nature, 432, 888892.
  • Kristoffersen, Y. (1990), Eurasian Basin, in Geology of North America, vol. L, The Arctic Ocean Region, edited by A. Grantz, L. Johnson, and J. F. Sweeny, pp. 365378, Geol. Soc. of Am., Boulder, Colo.
  • Langrock, U., R. Stein, M. Lipinski, and H. Brumsack (2003), Late Jurassic to Early Cretaceous black shale formation and paleoenvironment in high northern latitudes: Examples from the Norwegian-Greenland Seaway, Paleoceanography, 18(3), 1074, doi:10.1029/2002PA000867.
  • Leventhal, J. S. (1983), An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition, Geochim. Cosmochim. Acta, 47, 133137.
  • Lou, Y., D. A. Sims, J. T. Ball, R. B. Thomas, and D. T. Tissue (1996), Sensitivity of leaf photosynthesis to CO2 concentrations is an invariant function for C3 plants: A test with experimental data and global applications, Global Biogeochem. Cycles, 10, 209222.
  • Lourens, L. J., A. Sluijs, D. Kroon, J. C. Zachos, E. Thomas, U. Röhl, J. Bowles, and I. Raffi (2005), Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 10831087, doi:10.1038/nature03814.
  • Meyers, P. (1997), Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes, Org. Geochem., 27, 213250.
  • Miller, K. G., R. G. Fairbanks, and G. S. Mountain (1987), Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 2, 119.
  • Moran, K., et al. (2006), The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441, 601605.
  • Pagani, M., N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J. S. Sinninghe Damsté, G. R. Dickens, and the IODP Expedition 302 Scientists (2006), The Arctic's hydrologic response to global warming during the Palaeocene-Eocene thermal maximum, Nature, 442, 671675.
  • Rau, G. H., T. Takahashi, and D. J. Des Marais (1989), Latitudinal variations in plankton δ13C: Implications for CO2 and productivity in the past oceans, Nature, 341, 516518.
  • Sinninghe-Damsté, J. S., S. G. Wakeham, M. E. L. Kohnen, J. M. Hayes, and J. W. Leeuw (1993), A 6,000-year sedimentary molecular record of chemocline excursions in the Black Sea, Nature, 362, 827829.
  • Sluijs, A., et al. (2006), Subtropical Arctic Ocean temperatures during the Palaeocene Eocene thermal maximum, Nature, 441, 610613.
  • Stein, R., J. Rullkötter, and D. H. Welte (1986), Accumulation of organic-carbon-rich sediments in the Late Jurassic and Cretaceous Atlantic Ocean—A synthesis, Chem. Geol., 56, 132.
  • Stein, R., C. J. Schubert, R. W. Macdonald, K. Fahl, H. R. Harvey, and D. Weiel (2004), The central Arctic Ocean: Distribution, sources, variability and burial of organic carbon, in The Organic Carbon Cycle in the Arctic Ocean, edited by R. Stein, and R. W. Macdonald, pp. 295314, Springer, New York.
  • Taylor, G. H., M. Teichmüller, A. Davis, C. F. K. Diessel, R. Littke, and P. Robert (1998), Organic Petrology, 704 pp., Gebrüder Bornträger, Stuttgart, Germany.
  • Tissot, B. P., and D. H. Welte (1984), Petroleum Formation and Occurrence, 699 pp., Springer, New York.
  • Twichell, S. C., P. A. Meyers, and L. Diester-Haass (2002), Significance of high C/N ratios in organic carbon-rich Neogene sediments under the Benguela Current upwelling system, Org. Geochem., 33, 715722.
  • Wilkin, R. T., H. L. Barnes, and S. L. Brantley (1996), The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions, Geochim. Cosmochim. Acta, 60, 38973912.
  • Wilson, J. T. (1963), Hypothesis of the Earth's behavior, Nature, 198, 925929.
  • Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and aberrations in global climate 65 Ma to Present, Science, 292, 686693.