SEARCH

SEARCH BY CITATION

References

  • Acton, G., K. L. Verosub, A. Roth, and D. Linderholm (2005), Coercivity distributions and magnetic particle interactions from first-order reversal curves (FORCs): Examples from natural materials and software for data analysis, Eos Trans. AGU, 86(52), Fall Meeting Suppl., Abstract GP13A-0044.
  • Antretter, M., and M. Fuller (2002), Paleomagnetism and rock magnetism of Martian meteorite ALH 84001, Phys. Chem. Earth, Parts ABC, 27, 12991303.
  • Banerjee, S. K., and R. B. Hargraves (1972), Natural remanent magnetizations of carbonaceous chondrites and the magnetic field in the early solar system, Earth Planet. Sci. Lett., 17, 110119.
  • Brecher, A. (1977), Meteoritic magnetism: Implications for parent bodies of origin, in Comets, Asteroid and Meteorites, edited by A. H. Delsemme, pp. 415427, Univ. Toledo Press, Toledo, Ohio.
  • Brecher, A., and G. Arrhenius (1974), The paleomagnetic record in carbonaceous chondrites: Natural remanence and magnetic properties, J. Geophys. Res., 79, 20812106.
  • Brecher, A., and L. Leung (1979), Ancient magnetic field determinations on selected chondritic meteorites, Phys. Earth Planet. Inter., 20, 361378.
  • Brecher, A., and R. P. Ranganayaki (1975), Paleomagnetic systematics of ordinary chondrites, Earth Planet. Sci. Lett., 25, 5767.
  • Brenker, F. E., A. N. Krot, and P. H. Warren (2002), Evidence for a high temperature episode during multistage alteration of Allende dark inclusions, Meteorit. Planet. Sci., 37, suppl., 24.
  • Butler, R. F. (1972), Natural remanent magnetization and thermomagnetic properties of the Allende meteorite, Earth Planet. Sci. Lett., 17, 120128.
  • Carvallo, C., A. R. Muxworthy, D. J. Dunlop, and W. Williams (2003), Micromagnetic modeling of first-order reversal curve (FORC) diagrams for single-domain and pseudo-single-domain magnetite, Earth Planet. Sci. Lett., 213, 375390.
  • Chen, A. P., R. Egli, and B. Moskowitz (2005), A FORC in the road? IRM Q., 15(3), 111.
  • Cisowski, S. M., and M. Fuller (1986), Lunar paleointensities via the IRMs normalization method and the early magnetic history of the Moon, in Origin of the Moon: Proceedings of the Conference, Kona, HI, October 13–16, 1984, edited by W. K. Hartmann, R. J. Phillips, and G. J. Taylor, pp. 411424, Lunar and Planet. Inst., Houston, Tex.
  • Clarke, R. S.Jr., and E. R. D. Scott (1980), Tetrataenite; ordered FeNi, a new mineral in meteorites, Am. Mineral., 65, 624630.
  • Collinson, D. W. (1987), Magnetic properties of the Olivenza meteorite—Possible implications for its evolution and an early solar system, Earth Planet. Sci. Lett., 84, 369380.
  • Day, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260267.
  • Donati, J.-F., F. Paletou, J. Bouvier, and J. Ferreira (2005), Direct detection of a magnetic field in the innermost regions of an accretion disk, Nature, 438, 466469.
  • Dunlop, D. J. and Ö. Özdemir (1997), Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, New York.
  • Dunlop, D. J., B. Zhang, and Ö. Özdemir (2005), Linear and nonlinear Thellier paleointensity behavior of natural minerals, J. Geophys. Res., 110, B01103, doi:10.1029/2004JB003095.
  • Ebel, D. S., M. L. Rivers, and M. K. Weisberg (2007), Meteorite 3-dimensional synchrotron micro-tomography: Methods and applications, Meteorit. Planet. Sci., in press.
  • Egli, R. (2004), Characterization of individual rock magnetic components by analysis of remanence curves: 2. Fundamental properties of coercivity distributions, Phys. Chem. Earth, Parts ABC, 29, 851867.
  • Ferreira, J. (1997), Magnetically-driven jets from Keplerian accretion disks, Astron. Astrophys., 319, 340359.
  • Funaki, M., T. Nagata, and K. Momose (1981), Natural remanent magnetizations of chondrules, metallic grains and matrix of an Antarctic chondrite, ALH-769, Mem. Nat. Inst. Polar Res. Spec. Issue, 20, 300315.
  • Gattacceca, J., and P. Rochette (2004), Toward a robust normalized magnetic paleointensity method applied to meteorites, Earth Planet. Sci. Lett., 227, 377393.
  • Herndon, J. M., M. W. Rowe, E. E. Larson, and D. E. Watson (1976), Thermomagnetic analysis of meteorites; 3, C3 and C4 chondrites, Earth Planet. Sci. Lett., 29, 283290.
  • Joung, M. K. R., M.-M. M. Low, and D. Ebel (2004), Chondrule formation and protoplanetary disk heating by current sheets in nonideal magnetohydrodynamic turbulence, Astrophys. J., 606, 532541.
  • Kletetschka, G., T. Kohout, and P. Wasilewski (2003), Magnetic remanence in the Murchison meteorite, Meteorit. Planet. Sci., 38, 399405.
  • Kletetschka, G., M. H. Acuna, T. Kohout, P. J. Wasilewski, and J. E. P. Connerney (2004), An empirical scaling law for acquisition of thermoremanent magnetization, Earth Planet. Sci. Lett., 226, 521528.
  • Kletetschka, G., T. Kohout, P. J. Wasilewski, and M. Fuller (2005), Recognition of thermal remanent magnetization in rocks and meteorites, paper presented at 10th Scientific Assembly of the International Association of Geomagnetism and Aeronomy, Toulouse, France.
  • Kletetschka, G., M. D. Fuller, T. Kohout, P. J. Wasilewski, E. Herrero-Bervera, N. F. Ness, and M. H. Acuna (2006), TRM in low magnetic fields: A minimum field that can be recorded by large multidomain grains, Phys. Earth Planet. Inter., 154, 290298.
  • Kohout, T., G. Kletetschka, M. Kobr, P. Pruner, and P. J. Wasilewski (2004), The influence of terrestrial processes on meteorite magnetic records, Phys. Chem. Earth, Parts ABC, 29, 885897.
  • Lanoix, M., and D. W. Strangway (1978), The magnetic remanence carried by Allende chondrules, Meteoritics, 13, 531536.
  • Lanoix, M., D. W. Strangway, and G. W. Pearce (1977), Anomalous acquisition of thermoremanence at 130C in iron and paleointensity of the Allende meteorite, Proc. Lunar Sci. Conf., 8, 689701.
  • Lofgren, G. E. (1996), A dynamic crystallization model for chondrule melts, in Chondrules and the Protoplanetary Disk, edited by R. H. Hewins, R. H. Jones, and E. R. D. Scott, pp. 187196, Cambridge Univ. Press, New York.
  • Meibom, A., S. J. Desch, A. N. Krot, J. N. Cuzzi, M. I. Petaev, L. Wilson, and K. Keil (2000), Large-scale thermal events in the solar nebula; evidence from Fe, Ni metal grains in primitive meteorites, Science, 288, 839841.
  • Morden, S. J. (1992), The anomalous demagnetization behaviour of chondritic meteorites, Phys. Earth Planet. Inter., 71, 189204.
  • Morden, S. J., and D. W. Collinson (1992), The implications of the magnetism of ordinary chondrite meteorites, Earth Planet. Sci. Lett., 109, 185205.
  • Muxworthy, A. R., and D. J. Dunlop (2002), First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature, Earth Planet. Sci. Lett., 203, 369382.
  • Nagata, T. (1979), Meteorite magnetism and the early solar system magnetic field, Phys. Earth Planet. Inter., 20, 324341.
  • Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 66606667.
  • Pike, C. R., A. P. Roberts, M. J. Dekkers, and K. L. Verosub (2001a), An investigation of multi-domain hysteresis mechanisms using FORC diagrams, Phys. Earth Planet. Inter., 126, 1125.
  • Pike, C. R., A. P. Roberts, and K. L. Verosub (2001b), First-order reversal curve diagrams and thermal relaxation effects in magnetic particles, Geophys. J. Int., 145, 721730.
  • Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,46128,475.
  • Rochette, P., L. Sagnotti, M. Bourot-Denise, G. Consolmagno, L. Folco, J. Gattacceca, M. L. Osete, and L. Pesonen (2003), Magnetic classification of stony meteorites; 1, Ordinary chondrites, Meteorit. Planet. Sci., 38, 251268.
  • Sakurai, L. (1959), Motions of solar cosmic rays and the properties of the general magnetic field of the Sun, J. Geomagn. Geoelectr., 11, 2133.
  • Scott, E. R. D., and R. S. Rajan (1981), Polycrystalline taenite and metallographic cooling rates of chondrites; reply to comments of A. W. R. Bevan and H. J. Axon, Geochim. Cosmochim. Acta, 45, 1959.
  • Selkin, P. A., and L. Tauxe (2000), Long-term variations in palaeointensity, Phil. Trans. R. Soc. London, Ser. A, 358, 10651088.
  • Shimoda, G., N. Nakamura, M. Kimura, T. Kani, S. Nohda, and K. Yamamoto (2005), Evidence from the Rb-Sr system for 4.4 Ga alteration of chondrules in the Allende (CV3) parent body, Meteorit. Planet. Sci., 40, 10591072.
  • Shive, P. J. (1986), Suggestions for the use of SI units in magnetism, Eos Trans. AGU, 67, 25.
    Direct Link:
  • Shu, F. H., H. Shang, and T. Lee (1996), Toward an astrophysical theory of chondrites, Science, 271, 15451552.
  • Shu, F. H., H. Shang, A. E. Glassgold, and T. Lee (1997), X-rays and fluctuating X-winds from protostars, Science, 277, 14751479.
  • Stacey, F. D. (1976), Paleomagnetism of meteorites, Annu. Rev. Earth Planet. Sci., 4, 147157.
  • Sugiura, N., and D. W. Strangway (1985), NRM directions around a centimeter-sized dark inclusion in Allende, Proc. Lunar Planet. Sci. Conf., 15th, J. Geophys. Res. 90, C729C738.
  • Sugiura, N., and D. W. Strangway (1988), Magnetic studies of meteorites, in Meteorites and the Early Solar System, edited by J. F. Kerridge, and M. S. Matthews, pp. 595615, Univ. of Ariz. Press, Tucson.
  • Sugiura, N., M. Lanoix, and D. W. Strangway (1979), Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite, Phys. Earth Planet. Inter., 20, 342349.
  • Thorpe, A. N., F. E. Senftle, and J. R. Grant (2002), Magnetic study of magnetite in the Tagish Lack meteorite, Meteorit. Planet. Sci., 37, 763771.
  • Tsuchiyama, A., R. Shigeyoshi, T. Kawabata, T. Nakano, K. Uesugi, and S. Shirono (2003), Three-dimensional structures of chondrules and their high-speed rotation, Annu. Lunar Planet. Sci. Conf., 34th, Abstract A1271.
  • Uehara, M., and N. Nakamura (2006), Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines, Earth Planet. Sci. Lett., 250, 292305.
  • Valet, J. (2003), Time variations in geomagnetic intensity, Rev. Geophys., 41(1), 1004, doi:10.1029/2001RG000104.
  • Wasilewski, P. J. (1973), Magnetic hysteresis in natural materials, Earth Planet. Sci. Lett., 20, 6772.
  • Wasilewski, P. (1981a), New magnetic results from Allende C3(V), Phys. Earth Planet. Inter., 26, 134148.
  • Wasilewski, P. (1981b), Magnetization of small iron-nickel spheres, Phys. Earth Planet. Inter., 26, 149161.
  • Wasilewski, P. (1988), Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite, Phys. Earth Planet. Inter., 52, 150158.
  • Wasilewski, P. J., and T. Dickinson (2000), Aspects of the validation of magnetic remanence in meteorites, Meteorit. Planet. Sci., 35, 537544.
  • Wasilewski, P., M. H. Acuna, and G. Kletetschka (2002), 433 Eros: Problems with the meteorite magmatism record in attempting an asteroid match, Meteorit. Planet. Sci., 37, 937950.
  • Willis, J., and J. I. Goldstein (1981), A revision of metallographic cooling rate curves for chondrites, Proc. Lunar Planet. Sci. Conf., 12, Part B, 11351143.
  • Yu, Y. (2006), How accurately can the NRM/SIRM determine the ancient planetary magnetic field intensity? Earth Planet. Sci. Lett., 250, 2737.