SEARCH

SEARCH BY CITATION

References

  • Agnew, T., and S. Howel (2003), The use of operational ice charts for evaluating passive microwave ice concentration data, Atmos. Ocean, 41(4), 317331.
  • Alam, A., and J. A. Curry (1998), Evolution of new ice and turbulent fluxes from freezing Arctic leads, J. Geophys. Res., 103, 15,78315,802.
  • Andersen, S., R. T. Tonboe, S. Kern, and H. Schyberg (2006), Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using Numerical Weather Prediction model fields: An intercomparison of nine algorithms, Remote Sens. Environ., 104, 374392.
  • Belchansky, G. I., and D. C. Douglas (2002), Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN and RADARSAT data, Remote Sens. Environ., 81, 6781.
  • Bertoia, C., M. Manore, H. S. Andersen, C. O'Connors, K. Q. Hansen, and C. Evanego (2004), Synthetic aperture radar for operational ice observation and analysis at the U.S., Canadian and Danish National Ice Centers, in Synthetic Aperture Radar Marine User's Manual, edited by C. R. Jackson, and J. R. Apel, pp. 417442, NOAA, Silver Spring, Md.
  • Bøvith, T., and S. Andersen (2005), Sea ice concentration from single-polarized SAR data using second-order grey level statistics and learning vector quantization, Sci. Rep. 05-04, Dan. Meteorol. Inst., Copenhagen, Denmark.
  • Brandt, R. E., S. G. Warren, A. P. Worby, and T. C. Grenfell (2005), Surface albedo of the Antarctic sea ice zone, J. Clim., 18, 36063622.
  • Campbell, W. J., et al. (1978), Microwave remote sensing of sea ice in the AIDJEX main experiment, Boundary Layer Meteorol., 13, 309337.
  • Cavalieri, D. J. (1994), A microwave technique for mapping thin sea ice, J. Geophys. Res., 99(C6), 12,56112,572.
  • Cavalieri, D. J., P. Gloersen, and W. J. Campbell (1984), Determination of sea ice parameters with the NIMBUS 7 SMMR, J. Geophys. Res., 89(D4), 53555369.
  • Cavalieri, D. J., K. M. St. Germain, and C. T. Swift (1995), Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I, J. Glaciol., 41, 455464.
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, J. C. Comiso, and H. J. Zwally (1999), Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets, J. Geophys. Res., 104(C7), 15,80315,814.
  • Colton, M. C., and G. A. Poe (1999), Intersensor calibration of DMSP SSM/I's: F-8 to F-14, 1987–1997, IEEE Trans. Geosci. Remote Sens., 37(1), 418439.
  • Comiso, J. C. (1986), Characteristics of arctic winter sea ice from satellite multispectral microwave observations, J. Geophys. Res., 91(C1), 975994.
  • Comiso, J. C. (2001), Satellite-observed variability and trend in sea-ice extent, surface temperature, albedo and clouds in the Arctic, Ann. Glaciol., 33, 457473.
  • Comiso, J. C., D. J. Cavalieri, C. L. Parkinson, and P. Gloersen (1997), Passive microwave algorithms for sea ice concentration: A comparison of two techniques, Remote Sens. Environ., 60, 357384.
  • Eicken, H., T. C. Grenfell, D. K. Perovich, J. A. Richter-Menge, and K. Frey (2004), Hydraulic controls of summer Arctic pack ice albedo, J. Geophys. Res., 109, C08007, doi:10.1029/2003JC001989.
  • Gill, R. S. (2001), Operational detection of sea ice edges and ice bergs using SAR, Can. J. Remote Sens., 27(5), 411432.
  • Haas, C., and J. L. Lieser (2003), Sea ice conditions in the Transpolar Drift in August/September 2001: Observations during Polarstern cruise ARKTIS XVII/2, Rep. Polar Mar. Res. 441, Alfred Wegener Inst. for Polar and Mar. Res., Bremerhaven, Germany.
  • Hanna, E., and J. Bamber (2001), Derivation and optimization of a new Antarctic sea-ice record, Int. J. Remote Sens., 22(1), 113139.
  • Hollinger, J. P., R. Lo, and G. Poe (1987), Special Sensor Microwave/Imager User's Guide, Naval Res. Lab., Washington, D. C.
  • Kaleschke, L., C. Lüpkes, T. Vihma, J. Haarpaintner, A. Bochert, J. Hartmann, and G. Heygster (2001), SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis, Can. J. Remote Sens., 27(5), 526537.
  • Kern, S., L. Kaleschke, and D. A. Clausi (2003), A comparison of two 85GHz SSM/I ice concentration algorithms with AVHRR and ERS-2 SAR imagery, IEEE Trans. Geosci. Remote Sens., 41(10), 22942306.
  • Kwok, R. (2002), Sea ice concentration estimates from satellite passive microwave radiometry and openings from SAR ice motion, Geophys. Res. Lett., 29(9), 1311, doi:10.1029/2002GL014787.
  • Kwok, R., and G. F. Cunningham (2002), Seasonal ice area and volume production of the Arctic Ocean: November 1996 through April 1997, J. Geophys. Res., 107(C10), 8038, doi:10.1029/2000JC000469.
  • Lieser, J. L. (2005), Sea ice conditions in the northern North Atlantic in 2003 and 2004 observations during RV POLARSTERN cruises ARKTIS XIX/1a and b and Arktis XX/2, Rep. Polar Mar. Res. 504, Alfred Wegener Inst. for Polar and Mar. Res., Bremerhaven, Germany.
  • Liu, Q., E. Augstein, and A. Darovskikh (1998), Polarisation anomaly of the microwave brightness temperature from ice, Appl. Opt., 37(12), 22282230.
  • Lubin, D., C. Garrity, R. O. Ramseier, and R. H. Whritner (1997), Evaluation of the Special Sensor Microwave Imager 85.5 GHz channels for total sea ice concentration retrieval during the Arctic summer, Remote Sens. Environ., 62, 6376.
  • Lüthje, M., D. L. Feltham, P. D. Taylor, and M. G. Worster (2006), Modeling the summertime evolution of sea-ice meltponds, J. Geophys. Res., 111, C02001, doi:10.1029/2004JC002818.
  • Markus, T., and D. J. Cavalieri (2000), An enhancement of the NASA Team sea ice algorithm, IEEE Trans. Geosci. Remote Sens., 38(3), 13871398.
  • Maslanik, J., and J. Stroeve (1990), DMSP SSM/I daily polar gridded brightness temperatures, June to September 2001 [CD-ROM], updated 2004, Natl. Snow and Ice Data Cent., Boulder, Colo.
  • Mätzler, C., and U. Wegmüller (1987), Dielectric properties of freshwater ice at microwave frequencies, J. Phys. D Appl. Phys., 20, 16231630.
  • Meier, W. N. (2005), Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas, IEEE Trans. Geosci. Remote Sens., 43(6), 13241337.
  • Moritz, R. E. (1988), The ice budget of the Greenland Sea, Tech. Rep. TR8812, Appl. Phys. Lab., Univ. of Wash., Seattle, Wash.
  • Oelke, C. (1997), Atmospheric signatures in sea-ice concentration estimates from passive microwaves: Modelled and observed, Int. J. Remote Sens., 18(5), 11131136.
  • Parkinson, C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso (1999), Arctic sea ice extents, areas and trends, 1978–1996, J. Geophys. Res., 104(C9), 20,83720,856.
  • Pedersen, L. T. (1998), Development of New Satellite Ice Data Products, edited by S. Sandven et al., Tech. Rep. 145, chap. 6.2, pp. 6.16.4, Nansen Environ. and Remote Sens. Cent., Bergen, Norway.
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan (2003), Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108(D14), 4407, doi:10.1029/2002JD002670.
  • Ritchie, A. A., M. R. Smith, R. L. Schudalla, D. K. Conway, F. J. LaFontaine, B. Motta, H. M. Goodman, and D. Moss (1998), Critical analyses of data differences between FNMOC and AFGWC spawned SSM/I datasets, J. Atmos. Sci., 55(9), 16011612.
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor (2000), Statistical significance of trends and trend differences in layer-average atmospheric temperature time series, J. Geophys. Res., 105(D6), 73377356.
  • Shokr, M. E. (1991), Evaluation of second order texture parameters for sea ice classification from radar images, J. Geophys. Res., 96(C6), 10,62510,640.
  • Smith, D. M. (1996), Extraction of winter sea-ice concentration in the Greenland and Barents Seas from SSM/I data, Int. J. Remote Sens., 17(13), 26252646.
  • Spreen, G. (2004), Meereisfernerkundung mit dem satellitengestützten Mikrowellenradiometer AMSR (-E): Bestimmung der Eiskonzentration und Eiskante unter Verwendung der 89 Ghz-Kanäle, Diplomarbeit am Fachbereich Physik der Universität Hamburg, angefertigt am Institut für Umweltphysik, Univ. Bremen, Bremen, Germany.
  • Spreen, G., L. Kaleschke, and G. Heygster (2007), Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys. Res., doi:10.1029/2005JC003384, in press.
  • Steffen, K., J. Key, D. J. Cavalieri, J. C. Comiso, P. Gloersen, K. St. Germain, and I. Rubinstein (1992), The estimation of geophysical parameters using passive microwave algorithms, in Microwave Remote Sensing of Sea Ice, Geophys. Monogr. Ser., vol. 68, edited by F. D. Carsey, pp. 201228, AGU, Washington, D. C.
  • Stroeve, J. (2000), Ocean masks from NSIDC [CD-ROM], updated March 2002, Natl. Snow and Ice Data Cent., Boulder, Colo.
  • Stroeve, J., X. Li, and J. Maslanik (1997), An intercomparison of DMSP F11- and F13-derived sea ice products, Spec. Rep. 5, http://nsidc.org/pubs/special/5/index.html, Natl. Snow and Ice Data Cent., Boulder Colo.
  • Svendsen, E., C. Mätzler, and T. C. Grenfell (1987), A model for retrieving total sea ice concentration from spaceborne dual-polarized passive microwave instrument operating near 90 GHz, Int. J. Remote Sens., 8(10), 14791487.
  • Tonboe, R., S. Andersen, L. Toudal, and G. Heygster (2006), Sea ice emission modelling applications, in Thermal Microwave Radiation: Applications for Remote Sensing, IET Electromagn. Waves Ser., 52, edited by C. Mätzler et al., pp. 382400, London, U.K.
  • Wensnahan, M., G. A. Maykut, T. C. Grenfell, and D. P. Winebrenner (1993), Passive microwave remote sensing of thin sea ice using principal component analysis, J. Geophys. Res., 98(C7), 12,45312,468.