SEARCH

SEARCH BY CITATION

References

  • Bouman, B. A. M. (1992), Linking physical remote sensing model with crop growth simulation models, applied for sugar beet, Int. J. Remote Sens., 13, 25652581.
  • Brisson, N., et al. (2003), An overview of the crop model STICS, Eur. J. Agron., 18, 309332.
  • Brunsell, N. A., and R. R. Gillies (2003), Scale issues in land-atmosphere interactions: Implications for remote sensing of the surface energy balance, Agric. For. Meteorol., 117, 203221.
  • Calvet, J. C., and J. F. Soussana (2001), Modelling CO2-enrichment effects using an interactive vegetation SVAT scheme, Agric. For. Meteorol., 108, 129152.
  • Calvet, J. C., J. Noihan, J. L. Roujean, P. Bessemoulin, M. Cabelguenne, A. Olioso, and J. P. Wigneron (1998), An interactive vegetation SVAT model tested against data from six contrasting sites, Agric. For. Meteorol., 92, 7395.
  • Calvet, J. C., V. Rivalland, C. Picon-Cochard, and J. M. Guehl (2004), Modelling forest transpiration and CO2 fluxes—Response to soil moisture stress, Agric. For. Meteorol., 124, 143156.
  • Carrara, A., A. S. Kowalski, J. Neirynck, I. A. Janssens, J. C. Yuste, and R. Ceulemans (2003), Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years, Agric. For. Meteorol., 119, 209227.
  • Clevers, J. G. P. W., and W. Verhoef (1993), LAI estimation by means of the WDVI: A sensitivity analysis with a combined PROSPECT-SAIL model, Remote Sens. Rev., 7, 4364.
  • Demarty, J., C. Ottlé, I. Braud, A. Olioso, J. P. Frangi, L. A. Bastidas, and H. V. Gupta (2004), Using a multiobjective approach to retrieve information on surface properties used in a SVAT model, J. Hydrol., 287, 214236.
  • Desai, A. R., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey (2005), Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA, Agric. For. Meteorol., 128, 3355.
  • Doraiswamy, P. C., J. L. Hatfield, T. J. Jackson, B. Akhmedov, J. Prueger, and A. Stern (2004), Crop condition and yield simulations using Landsat and MODIS, Remote Sens. Environ., 92, 548559.
  • Goetz, S. J., S. D. Prince, S. N. Goward, M. M. Thawley, and J. Small (1999), Satellite remote sensing of primary production: An improved production efficiency modeling approach, Ecol. Modell., 122, 239255.
  • Haboudane, D., J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan (2004), Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote Sens. Environ., 90, 337352.
  • Hasegawa, S., S. Osozawa, and H. Ueno (1994), Measurement of soil water flux in Andisol at a depth below a root zone of about 1 meter, Soil Sci. Plant Nutrition, 40, 137147.
  • Huete, A. R. (1988), A soil-adjusted vegetation index (SAVI), Remote Sens. Environ., 25, 89105.
  • Inoue, Y. (2003), Synergy of remote sensing and modeling for estimating ecophysiological processes in plant production, Plant Prod. Sci., 6, 328342.
  • Inoue, Y., M. S. Moran, and T. Horie (1998), Analysis of spectral measurements in Rice paddies for predicting rice growth and yield based on a simple crop simulation model, Plant Prod. Sci., 1, 269279.
  • Inoue, Y., T. Kurosu, H. Maeno, S. Uratsuka, T. Kozu, K. Dabrowska-Zielinska, and J. Qi (2002), Season-long daily measurements of multi-frequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy-rice field and their relationship with biological variables, Remote Sens. Environ., 81, 194204.
  • Inoue, Y., A. Olioso, and W. Choi (2004), Dynamic change of CO2 flux over bare soil field and its relationship with remotely sensed surface temperature, Int. J. Remote Sens., 25, 11811192.
  • Jacobs, C. M. J., B. J. J. M. Van der Hurk, and H. A. R. De Bruin (1996), Stomatal behavior and photosynthetic rate of unstressed grapevines in semi-arid conditions, Agric. For. Meteorol., 80, 111134.
  • Keeling, R. F., S. C. Piper, and M. Heimann (1996), Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration, Nature, 6579, 218221.
  • Kicklighter, D. W., J. M. Melillo, W. T. Peterjohn, E. B. Rastetter, A. D. McGuire, and P. A. Steudler (1994), Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils, J. Geophys. Res., 99(D1), 13031315.
  • Leuning, R., and M. J. Judd (1996), The relative merits of open- and closed-path analyses for measurements of eddy fluxes, Global Change Biol., 2, 241253.
  • Maas, S. J. (1988), Using satellite data to improve model estimates of crop yield, Agron. J., 80, 655662.
  • Maisongrande, P., A. Ruimy, G. Dedieu, and B. Saugier (1995), Monitoring seasonal and interannual variations of gross primary productivity, net primary productivity and net ecosystem productivity using a diagnostic model and remotely-sensed data, Tellus, Ser. B, 47, 178190.
  • Massman, W. J., and X. Lee (2002), Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges, Agric. For. Meteorol., 113, 121144.
  • Miyata, A., R. Leuning, O. T. Denmead, J. Kim, and Y. Harazono (2000), Carbon dioxide and methane fluxes from an intermittently flooded paddy field, Agric. For. Meteorol., 102, 287303.
  • Monteith, J. L. (1977), Climate and the efficiency of crop production in Britain, Philos. Trans. R. Soc. London, 281, 277294.
  • Moran, M. S., T. R. Clarke, Y. Inoue, and A. Vidal (1994), Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index, Remote Sens. Environ., 49, 246263.
  • Moran, M. S., A. Vidal, D. Troufleau, Y. Inoue, and T. A. Mitchell (1998), Ku- and C-band SAR for discriminating agricultural crop and soil conditions, IEEE Trans. Geosci. Remote Sens., 36, 265272.
  • Mougin, E., D. Lo Seena, S. Rambal, A. Gaston, and P. Hiernaux (1995), A regional Sahelian grassland model to be coupled with multispectral satellite data. I: Model description and validation, Remote Sens. Environ., 52, 181193.
  • Moulin, S., A. Bondeau, and R. Delécolle (1998), Combining agricultural crop models and satellite observations: From field to regional scales, Int. J. Remote Sens., 19, 10211036.
  • Noilhan, J., and J.-F. Mahfouf (1996), The ISBA land surface parameterization scheme, Global Planet. Change, 13, 145159.
  • Nouvellon, Y., et al. (2001), Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets, Remote Sens. Environ., 78, 131149.
  • Olioso, A. (1995), Estimating the difference between brightness and surface temperatures for a vegetal canopy, Agric. For. Meteorol., 72, 237242.
  • Olioso, A., H. Chauki, D. Courault, and J.-P. Wigneron (1999), Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models, Remote Sens. Environ., 68, 341356.
  • Olioso, A., et al. (2005), Future directions for advanced evapotranspiration modeling: Assimilation of remote sensing data into crop simulation models and SVAT models, Irrigation Drainage Syst., 19, 377412.
  • Ottlé, C., and M. Vidal-Madjar (1994), Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the HAPEX-MOBILHY region, J. Hydrol., 158, 241264.
  • Peñuelas, J., and Y. Inoue (2000), Reflectance assessment of canopy CO2 uptake, Int. J. Remote Sens., 21, 33533356.
  • Picard, G., T. Le Toan, and F. Mattia (2003), Understanding C-band radar backscatter from wheat canopy using a multiple-scattering coherent model, IEEE Trans. Geosci. Remote Sens., 41, 15831591.
  • Potter, C. P., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Klooster (1993), Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811841.
  • Prevot, L., L. Champion, and G. Guyot (1993), Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer, Remote Sens. Environ., 46, 331339.
  • Roy, J., and B. Saugier (2001), Terrestrial primary productivity: Definitions and milestones, in Terrestrial Global Productivity, edited by J. Roy, B. Saugier, and H. A. Mooney, pp. 16, Elsevier, New York.
  • Ruimy, A., G. Dedieu, and B. Saugier (1996), TURC: A diagnostic model of continental gross primary productivity and net primary productivity, Global Biogeochem. Cycles, 10, 269285.
  • Schimel, D. S., et al. (2000), Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States, Science, 287, 20042006.
  • Schmid, H. P. (1997), Experimental design for flux measurements: Matching scales of observations and fluxes, Agric. For. Meteorol., 87, 179200.
  • Schmid, H. P. (2002), Footprint modeling for vegetation atmosphere exchange studies: A review and perspective, Agric. For. Meteorol., 113, 159183.
  • Sirotenko, O. D. (2001), Crop modeling: Advances and problems, Agron. J., 93, 650653.
  • Stein, A., and F. W. T. Penning de Vries (Eds.) (1999), Data and Models in Action—Methodological Issues in Production Ecology, pp. 1179, Springer, New York.
  • Suyker, A. E., S. B. Verma, G. G. Burba, T. J. Arkebauer, D. T. Walters, and K. G. Hubbard (2004), Growing season carbon dioxide exchange in irrigated and rainfed maize, Agric. For. Meteorol., 124, 113.
  • Tian, H., J. M. Melillo, D. W. Kicklighter, S. Pan, J. Liu, A. D. McGuire, and B. Moore III (2003), Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle, Global Planet. Change, 37, 201217.
  • Van Gardingen, P. R., G. M. Foody, and P. J. Curran (Eds.) (1997), Scaling-Up, pp. 1386, Cambridge Univ. Press, New York.
  • Verhoef, W., and H. Bach (2003), Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models, Remote Sens. Environ., 87, 2341.
  • Veroustraete, F., J. Patyn, and R. B. Myneni (1996), Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model, Remote Sens. Environ., 58, 115130.
  • Wang, C., J. Qi, M. S. Moran, and R. Marsett (2004), Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery, Remote Sens. Environ., 90, 178189.
  • Webb, E. K., G. I. Pearman, and R. Leuning (1980), Correction for flux measurements for density effects due to heat and water vapor transfer, Q. J. R. Meteorol. Soc., 106, 85100.
  • Weiss, M., D. Troufleau, F. Baret, H. Chauki, L. Prevot, A. Olioso, N. Bruguier, and N. Brisson (2001), Coupling canopy functioning and radiative transfer models for remote sensing data assimilation, Agric. For. Meteorol., 108, 113128.
  • Whiting, M. L., L. Li, and S. L. Ustin (2004), Predicting water content using Gaussian model on soil spectra, Remote Sens. Environ., 89, 535552.
  • Wigneron, J. P., A. Olioso, J. C. Calvet, and P. Bertuzzi (1999), Estimating root-zone soil moisture from surface soil moisture data and soil-vegetation-atmosphere transfer modeling, Water Resour. Res., 35, 37353745.
  • Wigneron, J. P., J. C. Calvet, T. Pellarin, A. A. Van de Griend, M. Berger, and P. Ferrazzoli (2003), Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans, Remote Sens. Environ., 85, 489506.