SEARCH

SEARCH BY CITATION

References

  • Abe, S. (2000), Axioms and uniqueness theorem for Tsallis entropy, Phys. Lett. A, 271, 74.
  • Abe, S., S. Martinez, F. Pennini, and A. Plastino (2001), Nonextensive thermodynamic relations, Phys. Lett. A, 281, 126.
  • Arimitsu, T., and N. Arimitsu (2000a), Analysis of fully developed turbulence in terms of Tsallis statistics, Phys. Rev. E, 61, 32373240.
  • Arimitsu, T., and N. Arimitsu (2000b), Tsallis statistics and fully developed turbulence, J. Phys. A Math. Gen., 33, L235L241.
  • Arimitsu, T., and N. Arimitsu (2001), Analysis of fully developed turbulence by a generalized statistics, Prog. Theor. Phys., 105, 355.
  • Arimitsu, T., and N. Arimitsu (2002), Tsallis statistics and turbulence, Chaos Solitons Fractals, 13(3), 479489.
  • Arimitsu, T., and N. Arimitsu (2006), Multifractal PDF analysis for intermittent systems, Physica A, 365, 190196.
  • Ausloos, M., and K. Ivanova (2003), Dynamical model and nonextensive statistical mechanics of a market index on large time windows, Phys. Rev. E, 68, 046122046135.
  • Beck, C. (2000), Application of generalized thermostatistics to fully developed turbulence, Physica A, 277, 115123.
  • Beck, C. (2001a), Dynamical foundations of nonextensive statistical mechanics, Phys. Rev. Lett., 87, 180601.
  • Beck, C. (2001b), Scaling exponents in fully developed turbulence from nonextensive statistical mechanics, Physica A, 295, 195200.
  • Beck, C. (2001c), On the small-scale statistics of Lagrangian turbulence, Phys. Lett. A, 287, 240244.
  • Beck, C., G. S. Lewis, and H. L. Swinney (2001), Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow, Phys. Rev. E, 63, 035303.
  • Beck, C. (2002a), Generalized statistical mechanics and fully developed turbulence, Physica A, 306, 189198.
  • Beck, C. (2002b), Non-additivity of Tsallis entropies and fluctuations of temperature, Europhys. Lett., 57, 329333.
  • Beck, C. (2002c), Non-extensive statistical mechanics approach to fully developed hydrodynamic turbulence, Chaos Solitons Fractals, 13, 499506.
  • Beck, C. (2004), Superstatistics in hydrodynamic turbulence, Physica D, 193, 195207.
  • Boghosian, B. M. (1996), Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics, Phys. Rev. E, 53, 47544763.
  • Bolzan, M. J. A., F. M. Ramos, L. D. A. Sa, C. R. Neto, and R. R. Rosa (2002), Analysis of fine-scale canopy turbulence within and above an Amazon forest using Tsallis' generalized thermostatistics, J. Geophys. Res., 107(D20), 8063, doi:10.1029/2001JD000378.
  • Campos Velho, R. F., F. M. Ramos, R. R. Rosa, F. M. Ramos, R. A. Pielke, G. A. Degrazia, C. Rodrigues Neto, and A. Zanandrea (2001), Multifractal model for eddy diffusivity and counter-gradient term in atmospheric turbulence, Physica A, 295, 219223.
  • Chigirinskaya, Y., D. Schertzer, S. Lovejoy, A. Lazarev, and A. Ordanovich (1994), Unified multifractal atmospheric dynamics tested in the tropics: Part I, horizontal scaling and self criticality, Nonlinear Process. Geophys., 1, 105114.
  • Daniels, K. E., C. Beck, and E. Bodenschatz (2004), Defect turbulence and generalized statistical mechanics, Physica D, 193, 208217.
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan (1994), Multifractal characterizations of nonstationarity and intermittency in geophysical fields, observed, retrieved or simulated, J. Geophys. Res. Atmos., 99, 80558072.
  • Frisch, U. (1995), Turbulence: the Legacy of A. N. Kolmogorov, Cambridge Univ. Press, New York.
  • Ivanova, K., M. Ausloos, E. E. Clothiaux, and T. P. Ackerman (2000), Break-up of stratus cloud structure predicted from non Brownian motion liquid water and brightness temperature fluctuations, Europhys. Lett., 52, 4046.
  • Ivanova, K., E. E. Clothiaux, H. N. Shirer, T. P. Ackerman, J. C. Liljegren, and M. Ausloos (2002), Evaluating the quality of ground-based microwave radiometer measurements and retrievals using detrended fluctuation and spectral analysis methods, J. Appl. Meteorol., 41, 5668.
  • Kiely, G., and K. Ivanova (1999), Multifractal analysis of hourly precipitation, Phys. Chem. Earth, 24, 781786.
  • Ladoy, P., S. Lovejoy, and D. Schertzer (1991), Extreme fluctuations and intermittency in climatological temperatures and precipitation, Scaling, fractals, and non-linear variability in geophysics, edited by D. Schertzer, and S. Lovejoy, pp. 241250, Springer, New York.
  • Lazarev, A., D. Schertzer, S. Lovejoy, and Y. Chigirinskaya (1994), Unified multifractal atmospheric dynamics tested in the tropics: Part II, vertical scaling and generalized scale invariance, Nonlinear Process. Geophys., 1, 115123.
  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Dong (2001), A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature, J. Geophys. Res., 106(D13), 14,48514,500.
  • Lyra, M. L., and C. Tsallis (1998), Nonextensivity and multifractality in low-dimensional dissipative systems, Phys. Rev. Lett., 80, 5356.
  • Mandelbrot, B. B. (1974), Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier, J. Fluid Mech., 62, 331358.
  • Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan (1997), Scale invariance in liquid water distributions in marine stratocumulus. Part II: Multifractal properties and intermittency issues, J. Atmos. Sci., 54, 14231444.
  • Meson, A. M., and F. Vericat (2002), On the Kolmogorov-like generalization of Tsallis entropy, correlation entropies and multifractal analysis, J. Math Phys., 43, 904917.
  • Ramos, F. M., R. R. Rosa, C. Rodrigues Neto, M. J. A. Bolzan, L. D. Abreu Sa, and H. F. Campos Velho (2001a), Non-extensive statistics and three-dimensional fully developed turbulence, Physica A, 295, 250253.
  • Ramos, F. M., R. R. Rosa, C. Rodrigues Neto, M. J. A. Bolzan, and L. D. Abreu Sa (2001b), Nonextensive thermostatistics description of intermittency in turbulence and financial markets, Nonlinear Anal., 47, 35213530.
  • Sattin, F. (2003), Non-Gaussian probability distribution functions from maximum-entropy-principle considerations, Phys. Rev. E, 68, 32,10232,105.
  • Schertzer, D., and S. Lovejoy (1987), Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J. Geophys. Res., 92(D8), 96939714.
  • Schmitt, F., D. Schertzer, S. Lovejoy, and Y. Brunet (1994), Empirical study of multifractal phase transitions in atmospheric turbulence, Nonlinear Process. Geophys., 1, 95104.
  • Sreenivasan, K. R., and R. A. Antonia (1997), The phenomenology of small-scale turbulence, Annu. Rev. Fluid Mech., 29, 435472.
  • Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479.
  • Tsallis, C., and D. J. Bukman (1996), Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis, Phys. Rev. E, 54, R2197R2200.
  • Tsallis, C., R. S. Mendes, and A. R. Plastino (1998), The role of constraints within generalized nonextensive statistics, Physica A, 261, 534554.
  • Westwater, E. R. (1993), Ground-based microwave remote sensing of meteorological variables, in Atmospheric Remote Sensing by Microwave Radiometry, edited by M. A. Janssen, pp. 145213, John Wiley, Hoboken, N. J.
  • Wilk, G., and Z. Wlodarczyk (2000), Interpretation of the nonextensivity parameter q in some applications of Tsallis statistics and Lvy distributions, Phys. Rev. Lett., 84, 27702773.