SEARCH

SEARCH BY CITATION

References

  • Adler, R. F., H.-Y. Yeh, N. Prasad, W.-K. Tao, and J. Simpson (1991), Microwave rainfall simulations of a tropical convective system with a three dimensional cloud model, J. Appl. Meteorol., 30, 924953.
  • Benson, C. L., and G. V. Rao (1987), Convective bands as structural components of an Arabian sea cloud cluster, Mon. Wea. Rev., 115, 30133023.
  • Betts, A. K., and M. J. Miller (1993), The Betts-Miller scheme, in The representation of cumulus convection in numerical models, edited by K. A. Emanuel, and D. J. Raymond, pp. 246, Am. Meteorol. Soc.
  • Bhat, G. S., P. L. Rao, V. G. Sangolli, G. P. Bhat, A. B. Chandelkar, H. Rao, and V. B. Kadav (2005), Diurnal and intraseasonal variations observed on the west coast of India, Mausam, 55, 97106.
  • Blackadar, A. K. (1979), High resolution models of the planetary boundary layer, in Advances in Environmental Science and Engineering, edited by J. Pfafflin, and E. Ziegler, Vol. 1, pp. 5085, Gordon and Breach.
  • Carr, F. (1997), Mid-tropospheric cyclones of the summer monsoon, in Monsoon Dynamics, edited by T. N. Krishnamurti, pp. 13831412, Basel, Birkhauser, Verlag.
  • Daley, R. (1991), Atmospheric Data Analysis, Cambridge Univ. Press.
  • Das Gupta, M., P. K. Pradhan, S. Das, and U. C. Mohanty (2006), Simulation of rain-bearing summer monsoon systems along the west coast of India by use of ARMEX re-analysis. Accepted for publication, in Natural Hazards (special issue).
  • Das, S. (2002), Real time mesoscale weather forecasting over Indian region using MM5 modeling system, NCMRWF report no. NMRF/RR/3/2002. Available from the National Centre for Medium Range Weather Forecasting, A-50, Sector-62, NOIDA-201307, India.
  • Das, S., Y. C. Sud, and M. J. Suarez (1998), Inclusion of a prognostic cloud scheme with the Relaxed Arakawa-Schubert cumulus parameterization: Single Column model studies, Q. J. R. Meteorol. Soc., 124, 26712692.
  • Das, S., D. Johnson, and W.-K. Tao (1999), Single-column and cloud resolving model simulations of TOGA-COARE convective systems, J. Meteorol. Soc. Japan, 77, 803826.
  • Das, S., A. S. K. A. V. PrasadRao, U. C. Mohanty, A. K. Mitra, and D. Rajan (2004), Study of cloud liquid water path and total precipitable water content from IRS-P4/MSMR and numerical weather prediction model output, J. Indian Soc. Remote Sens., 32(2), 175184.
  • Davis, C. A., and M. L. Weisman (1994), Balanced dynamics of mesoscale vortices produced in simulated convective systems, J. Atmos. Sci., 51, 20052530.
  • Davis, C. A., T. Warner, and J. F. Bowers (2001), An operational mesoscale RT-FDDA analysis and forecasting system, Preprints 18th WAF and 14th NWP Confs., Ft. Lauderdale, AMS, Boston, MA.
  • De, U. S., and S. Dutta (2006), West coast rainfall and convective instability, J. Ind. Geophys. Union, Vol. 9, No.1, 7182.
  • Dudhia, J. (1989), Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 30773107.
  • Fast, J. D. (1995), “Mesoscale and modeling and four dimensional data assimilation for areas of highly complex terrain”, J. Appl. Meteorol., 34, 27622782.
  • Gadgil, S., and P. A. Francis (2001), Intense rainfall events over the west cost of the Indian peninsula, CAOS report 2001 AS 2. Available from CAOS, Indian Institute of Science, Banglore.
  • Grabowski, W. W., X. Wu, and M. M. Moncrieff (1996), Cloud resolving modeling of tropical systems during phase III of GATE. Part I: Two dimensional experiments, J. Atmos. Sci., 53, 36843709.
  • Grell, G. A., J. Dudhia, and D. R. Stauffer (1994), (MM5), NCAR technical note, NCAR/TN-398+STR, 117, pp. 1994.
  • Gruber, A., and A. F. Krueger (1984), The status of the NOAA outgoing longwave radiation dataset, Bull. Am. Meteorol. Soc., 65, 958962.
  • Hatwar, H. R., B. P. Yadav, Y. V. RamaRao, and R. S. Parikh (2005), Prediction of Western Disturbances and associated weather over Western Himalayas, Current Sci., 88(6), 913920.
  • Hong, Y. H., and H. L. Pan (1996), Nonlocal boundary layer vertical diffusion in a medium range forecast model, Mon. Wea. Rev., 124, 23222339.
  • Hsie, E. Y., R. A. Anthes, and D. Keyser (1984), Numerical simulation of frontogenesis in a moist atmosphere, J. Atmos. Sci., 41, 25812594.
  • Hsu, H., and Y. Liu (2002), The sensitivity of a real-time four-dimensional data assimilation procedure to weather research and forecast model simulations: a case study, 12th NCAR/PSU MM5 Workshop, June 23–24, Boulder, CO.
  • Janjic, Z. I. (1994), The step mountain eta-coordinate model: Further development of the convection, viscous sub layer, and turbulent closure scheme, Mon. Wea. Rev., 122, 927945.
  • Kain, J. S, and J. M. Fritsch (1993), Convective parameterization for mesoscale models: The Kain-Fritsch scheme, in The Representation of Cumulus Convection in Numerical Models, Meteorol. Monogr., Am. Meteorol. Soc., 46, 165170.
  • Kalnay, K., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, and R. D. Joseph (1996), The NCEP/NCAR 40 year re-analysis project, Bull. Am. Meteorol. Soc., 77, 437471.
  • Krishnamurti, T. N., and R. S. Hawkins (1970), Mid-tropospheric cyclones of the southwest monsoon, J. Appl. Meteorol., 9, 442458.
  • Krishnamurti, T. N., P. Ardanuy, Y. Ramanathan, and R. Pasch (1981), On the onset vortex of the summer monsoon, Mon. Wea. Rev., 105, 344363.
  • Lin, Y.-L., R. D. Farley, and H. D. Orville (1983), Bulk parameterization of snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 10651092.
  • Liu, C., M. W. Moncrieff, and W. W. Grabowski (2001a), Explicit and parameterized realizations of convective cloud systems in TOGA-COARE, Mon. Wea. Rev., 129, 16891703.
  • Liu, C., M. W. Moncrieff, and W. W. Grabowski (2001b), Hierarchical modeling of tropical convective systems using explicit and parameterized approaches, Q. J. R. Meteorol. Soc., 127, 493515.
  • Liu, Y., et al. (2002a), Performance and enhancements of the NCAR/ATEC Mesoscale FDDA and forecasting system, Preprints 15th NWP Confs., San Antonio, AMS, Boston, MA.
  • Liu, Y., et al. (2002b), Development and evaluation of a real-time FDDA and forecast system for the Year-2002 SLC Olympics, 12th NCAR/PSU MM5 Workshop, June 23–24, Boulder, CO.
  • Mak, M. K. (1975), The monsoonal mid-tropospheric cyclogenesis, J. Atmos. Sci., 32, 22462253.
  • Mandal, M., and U. C. Mohanty (2006), Numerical experiments for improvement in mesoscale simulation of Orissa super cyclone, Mausam, 57, 7996.
  • Miller, F. R., and R. N. Keshavamurthy (1968), Structure of an Arabian Sea summer monsoon system. IIOE Meteorological Monograph I, 94 pp., East-West Center Press, Honolulu.
  • Mitra, A. K., A. K. Bohra, and D. Rajan (1997), Daily rainfall analysis for Indian summer monsoon region, Int. Climatol. J., 17, 10831092.
  • Mohanty, U. C., O. P. Madan, S. R. Kalsi, R. K. Paliwal, and the team (2002), Weather summary during Arabian sea monsoon experiment (ARMEX) – 2002, Volume – I: daily weather summary, heavy rainfall events and anomaly fields during 2002, Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi, Available from CAS, IIT, Delhi – 110016, India.
  • Moncrieff, M. W. (1992), Organized convective systems: Archetypal models, mass and momentum flux theory, and parameterization, Q. J. R. Meteorol. Soc., 118, 819850.
  • Moncrieff, M. W., and C. Liu (2006), Representing convective organization in prediction models by a hybrid strategy, J. Atmos. Sci., 63, 34043420.
  • Moncrieff, M. W., and E. Klinker (1997), Mesoscale cloud systems in the tropical western Pacific as a process in general circulation model, Q. J. R. Meteorol. Soc., 123, 805827.
  • Moncrieff, M. W., S. K. Krueger, D. Gregory, J.-L. Redelsperger, and W.-K. Tao (1997), GEWEX cloud System Study (GCSS) working group 4: Precipitating convective cloud systems, Bull. Am. Meteorol. Soc., 78(5), 831845.
  • Moncrieff, M. W., C. Liu, and H.-M. Hsu (2005), Convective dynamics issues at ∼10-km grid-resolution, Proc. Workshop on representing Sub-grid Processes using Stochastic-Dynamical Models, ECMWF, 6–8 June. (In press).
  • NCAR (2003), PSU/NCAR Mesoscale Modeling System (MM5 version 3) tutorial class notes and user's guide, Available from the National Center for Atmospheric Research, Boulder, Colorado, USA, June.
  • Ogura, Y., and M. Yoshizaki (1988), Numerical study of orographic convective precipitation over the eastern Arabian sea and the Ghat mountains during the summer monsoon, J. Atmos. Sci., 45, 097121.
  • Prasad, N., H.-Y. M. Yeh, R. F. Adler, and W.-K. Tao (1995), Microwave and infrared simulations of an intense convective system and comparison with aircraft observations, J. Appl. Meteorol., 34, 153174.
  • Ramage, C. S. (1966), The summer atmospheric circulation over the Arabian Sea, J. Atmos. Sci., 23, 144150.
  • Ramanathan, V., and K. R. Shah (1972), Application of a primitive equation barotropic model to predict movement of western disturbances, J. Appl. Meteorol., 11, 268272.
  • Rao, Y. P. (1976), Southwest Monsoon, in Meteorological Monograph. Synoptic meteorology No. 1/1976, 367 pp., India Meteorological Department, New Delhi.
  • Rao, P. S. (2005), Arabian Sea monsoon experiment: An overview, Mausam, 55, 16.
  • Rao, G. V., and T. H. Hor (1991), Observed momentum transport in monsoon convective cloud bands, Mon. Wea. Rev., 119, 10751087.
  • Rao, D. V. B., and D. H. Prasad (2005), Impact of special observations on the numerical simulation of a heavy rainfall event during ARMEX- Phase I, Mausam, 55, 121130.
  • Rao, D. V. B., and D. H. Prasad (2006), Numerical prediction of the Orissa super cyclone (1999): Sensitivity to the parameterization of convection, boundary layer and explicit moisture processes, Mausam, 57, 6178.
  • Rao, P. S., and D. R. Sikka (2005), Intraseasonal variability of the summer monsoon over the north Indian ocean as revealed by the BOBMEX and ARMEX field programs, Pure Appl. Geophys., 163, 14811510.
  • Raodcap, J. R., and G. V. Rao (1993), An analytical study of the dependence of orientation and propagation of the Arabian Sea convection bands on wind shear, static stability and preexisting convection, Mon. Wea. Rev., 121, 16561670.
  • Reisner, J., R. J. Rasmussen, and R. T. Bruintjes (1998), Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model, Q. J. R. Meteorol. Soc., 124B, 10711107.
  • Rutledge, S. A., and P. V. Hobbs (1984), The mesoscale and microscale structure and organizations of cloud and precipitation in midlatitude clouds. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands, J. Atmos. Sci., 41, 29492972.
  • Schultz, P. (1995), An explicit cloud physics parameterization for operational numerical weather prediction, Mon. Wea. Rev., 123, 33313343.
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele (1997), Shipboard radar rainfall patterns within the TOGA-COARE IFA, Bull. Am. Meteorol. Soc., 78, 28172836.
  • Sikka, D. R. (2005), From the International Indian Ocean Experiment (IIOE) to the Arabian Sea Monsoon Experiment (ARMEX) – Four decades of major advances in monsoon meteorology, Mausam, 55, 1936.
  • Simpson, J., R. F. Adler, and G. R. North (1988), A proposed tropical rainfall measuring mission (TRMM) satellite, Bull. Am. Meteorol. Soc., 69, 278295.
  • Simpson, J., C. Kummerow, W.-K. Tao, and R. Adler (1996), On the tropical rainfall measuring mission (TRMM), Meteorol. Atmos. Phys., 60, 1936.
  • Stano, G., T. N. Krishnamurti, T. S. V. Vijay Kumar, and A. Chakraborty (2002), Hydrometeor structure of a composite monsoon depression using the TRMM radar, Tellus, 54A, 370381.
  • Stauffer, D. R., and N. L. Seaman (1994), Multiscale four-dimensional data assimilation, J. Appl. Meteorol., 33, 416434.
  • Tao, W.-K., J. Simpson, and M. McCumber (1989), Ice-water saturation adjustment, Mon. Wea. Rev., 117, 231235.
  • Tao, W. K., C.-H. Sui, B. Ferrier, S. lang, J. Scala, M. D. Chou, and K. Pickering (1993), Heating, moisture and water budgets of tropical and midlatitude squall lines: comparisons and sensitivity to longwave radiation, J. Atmos. Sci., 50, 673690.
  • Trier, S. B., C. A. Davis, and W. C. Skamarock (2000), Long-lived mesoconvective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations, Mon. Wea. Rev., 128, 33963412.
  • Trivedi, D. K., P. Mukhopadhyay, and S. S. Vaidya (2006), Impact of physical parameterization schemes on the numerical simulation of Orissa super cyclone (1999), Mausam, 57, 97110.
  • TRMM science Operations Plan (1996), Copy available from TRMM website ( trmm.gsfc.nasa.gov/publications_dir/sciencedoc.html).
  • Wang, W., Y.-H. Kuo, and T. T. Warner (1993), A diabatically driven mesoscale vortex in the lee of the Tibetan plateau, Mon. Wea. Rev., 121, 25422561.
  • Weisman, M. L., and C. A. Davis (1998), Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems, J. Atmos. Sci., 55, 26032622.
  • Wu, X., W. W. Grabowski, and M. W. Moncrieff (1998), Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study, J. Atmos. Sci., 55, 26932714.
  • Xu, K.-M., and D. A. Randall (1996), Explicit simulation of cumulus ensembles with the GATE Phase III data: Comparison with observations, J. Atmos. Sci., 53(24), 37103736.
  • Xu, K.-M., and D. A. Randall (2000), Explicit simulation of midlatitude cumulus ensembles: Comparison with ARM data, J. Atmos. Sci., 57(17), 28392858.
  • Zhang, D.-L. (1992), The formation of cooling induced mesovortex in the trailing stratiform region of a midlatitude squall line, Mon. Wea. Rev., 120, 27632785.
  • Zhang, D.-L., and J. M. Fritsch (1988), A numerical investigation of a convectively generated, inertialy stable, extratropical warm-core mesovortex over land. Part I: Structure and evolution, Mon. Wea. Rev., 116, 26602687.