SEARCH

SEARCH BY CITATION

References

  • Atkinson, R. (1997), Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and Alkenes, J. Phys. Chem. Ref. Data, 26, 215290.
  • Atkinson, R., and J. Arey (2003), Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review, Atmos. Environ., 37, S197S219.
  • Ball, S. M., D. R. Hanson, F. L. Eisele, and P. H. McMurry (1999), Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J. Geophys. Res., 104, 23,70923,718.
  • Barsanti, K. C., and J. F. Pankow (2004), Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions: Part 1. Aldehydes and ketones, Atmos. Environ., 38, 43714382.
  • Barsanti, K. C., and J. F. Pankow (2005), Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—2. Dialdehydes, methylglyoxal, and diketones, Atmos. Environ., 39, 65976607.
  • Berndt, T., O. Böge, and F. Stratmann (2004), Atmospheric particle formation from the ozonolysis of alkenes in the presence of SO2, Atmos. Environ., 38, 21452153.
  • Berndt, T., O. Böge, F. Stratmann, J. Heintzenberg, and M. Kulmala (2005), Rapid formation of sulfuric acid particles at near-atmospheric conditions, Science, 307, 698700.
  • Bilde, M., and S. N. Pandis (2001), Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of α- and β-pinene, Environ. Sci. Technol., 35, 33443349.
  • Bonn, B., and G. K. Moortgat (2002), New particle formation during α- and β-pinene oxidation by O3, OH and NO3, and the influence of water vapour: Particle size distribution studies, Atmos. Chem. Phys., 2, 183196.
  • Bonn, B., G. Schuster, and G. K. Moortgat (2002), Influence of water vapor on the process of new particle formation during monoterpene ozonolysis, J. Phys. Chem. A, 106, 28692881.
  • Burkholder, J. B., J. Curtius, A. R. Ravishankara, and E. R. Lovejoy (2004), Laboratory studies of the homogeneous nucleation of iodine oxides, Atmos. Chem. Phys., 4, 1934.
  • Chattopadhyay, S., and P. J. Ziemann (2005), Vapor pressures of substituted and unsubstituted monocarboxylic and dicarboxylic acids measured using an improved thermal desorption particle beam mass spectrometry method, Aerosol Sci. Technol., 39, 10851100, doi:1010.1080/02786820500421547.
  • Docherty, K. S., and P. J. Ziemann (2003), Effects of stabilized Criegee intermediate and OH radical scavengers on aerosol formation from reactions of β-pinene with O3, Aerosol Sci. Technol., 37, 877891.
  • Gao, S., et al. (2001), Experimental and modeling studies of secondary organic aerosol formation and some applications to the marine boundary layer, J. Geophys. Res., 106, 27,61927,634.
  • Gao, S., et al. (2004a), Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and α-pinene, J. Phys. Chem. A, 108, 1014710164.
  • Gao, S., et al. (2004b), Particle phase acidity and oligomer formation in secondary organic aerosol, Environ. Sci. Technol., 38, 65826589.
  • Glasius, M., et al. (2000), Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone, Environ. Sci. Technol., 34, 10011010.
  • Griffin, R. J., D. R. Cocker III, R. C. Flagan, and J. H. Seinfeld (1999a), Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res., 104, 35553567.
  • Griffin, R. J., D. R. Cocker III, J. H. Seinfeld, and D. Dabdub (1999b), Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons, Geophys. Res. Lett., 26, 27212724.
  • Grosjean, D., E. L. Willams II, E. Grosjean, J. M. Andino, and J. H. Seinfeld (1993), Atmospheric oxidation of biogenic hydrocarbons: Reaction of ozone with β-pinene, d-limonene and trans-caryophyllene, Environ. Sci. Technol., 27, 27542758.
  • Guenther, A., et al. (1995), A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 88738892.
  • Hatakeyama, S., K. Izumi, T. Fukuyama, and H. Akimoto (1989), Reactions of ozone with α-pinene and β-pinene in air: Yields of gaseous and particulate products, J. Geophys. Res., 94, 13,01313,024.
  • Hatakeyama, S., K. Izumi, T. Fukuyama, H. Akimoto, and N. Washida (1991), Reactions of OH with α-pinene and β-pinene in air: Estimate of global CO production from the atmospheric oxidation of terpenes, J. Geophys. Res., 96, 947958.
  • Hoffmann, T., et al. (1997), Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem., 26, 189222.
  • Hoffmann, T., R. Bandur, U. Marggraf, and M. Linscheid (1998), Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: Implications for new particle formation processes, J. Geophys. Res., 103, 25,56925,578.
  • Hoppel, W., et al. (2001), Particle formation and growth from ozonolysis of α-pinene, J. Geophys. Res., 106, 27,60327,618.
  • Iinuma, Y., O. Böge, T. Gnauk, and H. Herrmann (2004), Aerosol-chamber study of the α-pinene/O3 reaction: Influence of particle acidity on aerosol yields and products, Atmos. Environ., 38, 761773.
  • Intergovernmental Panel on Climate Change (2001), Climate change 2001: The scientific basis, in Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, C. A. Johnson, 881 pp., Cambridge Univ. Press, New York.
  • Jang, M., N. M. Czoschke, S. Lee, and R. M. Kamens (2002), Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814817.
  • Jang, M., B. Carroll, B. Chandramouli, and R. M. Kamens (2003), Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols, Environ. Sci. Technol., 37, 38283837.
  • Jaoui, M., and R. M. Kamens (2003), Gaseous and particulate oxidation products analysis of a mixture of α-pinene + β-pinene/O3/air in the absence of light and α-pinene + β-pinene NOx/air in the presence of natural sunlight, J. Atmos. Chem., 44, 259297.
  • Jenkin, M. E., D. E. Shallcross, and J. N. Harvey (2000), Development and application of a possible mechanism for the generation of cis-pinic acid from the ozonolysis of α- and β-pinene, Atmos. Environ., 34, 28372850.
  • Jonsson, Å. M., M. Hallquist, and E. Ljungström (2006), Impact of humidity on the ozone initiated oxidation of limonene, Δ3-carene, and α-pinene, Environ. Sci. Technol., 40, 188194, doi:110.1021/es051163w.
  • Kalberer, M., et al. (2004), Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 16591662.
  • Kavouras, I. G., N. Mihalopoulos, and E. G. Stephanou (1998), Formation of atmospheric particles from organic acids produced by forests, Nature, 395, 683686.
  • Kavouras, I. G., N. Mihalopoulos, and E. G. Stephanou (1999a), Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests, Geophys. Res. Lett., 26, 5558.
  • Kavouras, I. G., N. Mihalopoulos, and E. G. Stephanou (1999b), Secondary organic aerosol formation vs primary organic aerosol emission: In situ evidence for the chemical coupling between monoterpene acidic photooxidation products and new particle formation over forests, Eviron. Sci. Technol., 33, 10281037.
  • Keywood, M. D., et al. (2004a), Secondary organic aerosol formation from cyclohexene ozonolysis: Effect of OH scavenger and the role of radical chemistry, Environ. Sci. Technol., 38, 33433350.
  • Keywood, M. D., V. Varutbangkul, R. Bahreini, R. C. Flagan, and J. H. Seinfeld (2004b), Secondary organic aerosol formation from the ozonolysis of cycloalkenes and related compounds, Environ. Sci. Technol., 38, 41574164.
  • Khamaganov, V. G., and R. A. Hites (2001), Rate constants for the gas-phase reactions of ozone with isoprene, α- and β-pinene, and limonene as a function of temperature, J. Phys. Chem. A, 105, 815822.
  • Koch, S., et al. (2000), Formation of new particles in the gas-phase ozonolysis of monoterpenes, Atmos. Environ., 34, 40314042.
  • Kulmala, M., et al. (2001), Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR), Tellus, 53B, 324343.
  • Kulmala, M., et al. (2004), Formation and growth rates of ultra fine atmospheric particles: A review of observations, J. Aerosol Sci., 35, 143176.
  • Lee, A., G. W. Schade, R. Holzinger, and A. H. Goldstein (2005), A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux, Atmos. Chem. Phys., 5, 505513.
  • Lovejoy, E. R., J. Curtius, and K. D. Froyd (2004), Atmospheric ion-induced nucleation of sulfuric acid and water, J. Geophys. Res., 109, D08204, doi:10.1029/2003JD004460.
  • Nozière, B., I. Barnes, and K.-H. Becker (1999), Product study and mechanisms of the reactions of α-pinene and of pinonaldehyde with OH radicals, J. Geophys. Res., 104, 23,64523,656.
  • Odum, J. R., et al. (1996), Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 25802585.
  • Offenberg, J. H., T. E. Kleindienst, M. Jaoui, M. Lewandowski, and E. O. Edney (2006), Thermal properties of secondary organic aerosols, Geophys. Res. Lett., 33, L03816, doi:10.1029/2005GL024623.
  • O'Dowd, C. D., P. P. Aalto, Y. J. Yoon, and K. Hämeri (2004), The use of the pulse height analyser ultra fine condensation particle counter (PHA-UCPC) technique applied to sizing of nucleation mode particles of differing chemical composition, J. Aerosol Sci., 35, 205216.
  • Pandis, S. N., S. E. Paulson, J. H. Seinfeld, and R. C. Flagan (1991), Aerosol formation in the photooxidation of isoprene and β-pinene, Atmos. Environ., 25A, 9971008.
  • Peeters, J., L. Vereecken, and G. Fantechi (2001), The detailed mechanism of the OH-initiated atmospheric oxidation of α-pinene: a theoretical study, Phys. Chem. Chem. Phys., 3, 54895504.
  • Presto, A. A., and N. M. Donahue (2006), Investigation of α-pinene + ozone secondary organic aerosol formation at low total aerosol mass, Environ. Sci. Technol., 40, 35363543.
  • Presto, A. A., K. E. Huff Hartz, and N. M. Donahue (2005a), Secondary organic aerosol production from terpene ozonolysis: 1. Effect of UV radiation, Environ. Sci. Technol., 39, 70367045.
  • Presto, A. A., K. E. Huff Hartz, and N. M. Donahue (2005b), Secondary organic aerosol production from terpene ozonolysis: 2. Effect of NOx concentration, Environ. Sci. Technol., 39, 70467054.
  • Raes, F., and A. Janssens (1985), Ion-induced aerosol formation in a H2O-H2SO4 system—I. Extension of the classical theory and search for experimental evidence, J. Aerosol Sci., 16, 217227.
  • Tao, Y., and P. H. McMurry (1989), Vapor pressures and surface free energies of C14-C18 monocarboxylic acids and C5 and C6 dicarboxylic acids, Environ. Sci. Technol., 23, 15191523.
  • Tolacka, M. P., et al. (2004), Formation of oligomers in secondary organic aerosol, Environ. Sci. Technol., 38, 14281434.
  • Tunved, P., et al. (2006), High natural aerosol loading over boreal forests, Science, 312, 261263.
  • Yu, J., R. C. Flagan, and J. H. Seinfeld (1998), Identification of products containing –COOH, –OH, and –C=O in atmospheric oxidation of hydrocarbons, Environ. Sci. Technol., 32, 23572370.
  • Yu, J., D. R. Cocker III, R. J. Griffin, R. C. Flagan, and J. H. Seinfeld (1999), Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products, J. Atmos. Chem., 34, 207258.
  • Zhang, S.-H., M. Shaw, J. H. Seinfeld, and R. C. Flagan (1992), Photochemical aerosol formation from α-pinene and β-pinene, J. Geophys. Res., 97, 20,71720,729.
  • Ziemann, P. J. (2002), Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O3 with cyclohexene and homologous compounds, J. Phys. Chem. A, 106, 43904402.
  • Ziemann, P. J. (2003), Formation of alkoxyhydroperoxy aldehydes and cyclic peroxyhemiacetals from reactions of cyclic alkenes with O3 in the presence of alcohols, J. Phys. Chem. A, 107, 20482060.