SEARCH

SEARCH BY CITATION

References

  • Albrecht, B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 12271230.
  • Andreae, M. O., and P. J. Crutzen (1997), Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 10521058.
  • Artaxo, P. (2001), The atmospheric component of biogeochemical cycles in the Amazon Basin,, in The Biogeochemistry of the Amazon Basin,, edited by R. L. V. Michael, E. McClain, and Jeffrey E. Richey pp. 4252, Oxford Univ. Press, , New York.
  • Bahreini, R., M. D. Keywood, N. L. Ng, V. Varutbangkul, S. Gao, R. C. Flagan, J. H. Seinfeld, D. R. Worsnop, and J. L. Jimenez (2005), Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer, Environ. Sci. Technol., 39(15), 56745688.
  • Baltensperger, U., et al. (2005), Secondary organic aerosols from anthropogenic and biogenic precursors, Faraday Discuss., 130, 265278.
  • Brechtel, F. J., and S. M. Kreidenweis (2000a), Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part I: Theory and sensitivity studies, J. Atmos. Sci., 57, 18541871.
  • Brechtel, F. J., and S. M. Kreidenweis (2000b), Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part II: Laboratory and ambient studies, J. Atmos. Sci., 57, 18721887.
  • Broekhuizen, K., P. P. Kumar, and J. P. D. Abbatt (2004), Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species, Geophys. Res. Lett., 31(1), L01107, doi:10.1029/2003GL018203.
  • Carrico, C. M., S. M. Kreidenweis, W. C. Malm, D. E. Day, T. Lee, J. Carrillo, G. R. McMeeking, and J. L. Collett (2005), Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park, Atmos. Environ., 39(8), 13931404.
  • Choi, M. Y., and C. K. Chan (2002), The effects of organic species on the hygroscopic behaviors of inorganic aerosols, Environ. Sci. Technol., 36, 24222428.
  • Clegg, S. L., P. Brimblecomb, and A. Wexler (1998), A thermodynamic model of the system H+–NH4+–SO42−–NO3–H2O at tropospheric temperatures, J. Phys. Chem. A, 102, 21372154.
  • Clegg, S. L., J. H. Seinfeld, and P. Brimblecombe (2001), Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds, J. Aerosol Sci., 32, 713738.
  • Cohard, J. M., J. P. Pinty, and C. Bedos (1998), Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra, J. Atmos. Sci., 55(22), 33483357.
  • Corrigan, C. E., and T. Novakov (1999), Cloud condensation nucleus activity of organic compounds: A laboratory study, Atmos. Environ., 33, 26612668.
  • Cruz, C. N., and S. N. Pandis (1997), A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei, Atmos. Environ., 31, 22052214.
  • de Gouw, J. A., et al. (2005), Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002, J. Geophys. Res., 110(D16), D16305, doi:10.1029/2004JD005623.
  • Dinar, E., I. Taraniuk, E. R. Graber, S. Katsman, T. Moise, T. Anttila, T. F. Mentel, and Y. Rudich (2006), Cloud Condensation Nuclei properties of model and atmospheric HULIS, Atmos. Chem. Phys., 6, 24652481.
  • Docherty, K. S., and P. J. Ziemann (2003), Effects of stabilized Criegee intermediate and OH radical scavengers on aerosol formation from reactions of beta-pinene with O3, Aerosol Sci. Technol., 37(11), 877891.
  • Docherty, K. S., W. Wu, Y. B. Lim, and P. J. Ziemann (2005), Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3, Environ. Sci. Technol., 39(11), 40494059.
  • Donahue, N. M., A. L. Robinson, C. O. Stanier, and S. N. Pandis (2006), Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40(8), 26352643.
  • Facchini, M. C., M. Mircea, S. Fuzzi, and R. J. Charlson (1999), Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401(6750), 257259.
  • Gao, S., et al. (2004), Particle phase acidity and oligomer formation in secondary organic aerosol, Environ. Sci. Technol., 38(24), 65826589.
  • Giebl, H., A. Berner, G. Reischl, H. Puxbaum, A. Kasper-Giebl, and R. Hitzenberger (2002), CCN activation of oxalic and malonic acid test aerosols with the University of Vienna cloud condensation nuclei counter, J. Aerosol Sci., 33(12), 16231634.
  • Griffin, R. J., D. R. Cocker, J. H. Seinfeld, and D. Dabdub (1999), Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons, Geophys. Res. Lett., 26(17), 27212724.
  • Heald, C. L., D. J. Jacob, R. J. Park, L. M. Russell, B. J. Huebert, J. H. Seinfeld, H. Liao, and R. J. Weber (2005), A large organic aerosol source in the free troposphere missing from current models, Geophys. Res. Lett., 32(18), L18809, doi:10.1029/2005GL023831.
  • Hegg, D. A., S. Gao, W. Hoppel, G. Frick, P. Caffrey, W. R. Leaitch, N. Shantz, J. Ambrusko, and T. Albrechcinski (2001), Laboratory studies of the efficiency of selected organic aerosols as CCN, Atmos. Res., 58(3), 155166.
  • Henze, D. K., and J. H. Seinfeld (2006), Global secondary organic aerosol from isoprene oxidation, Geophys. Res. Lett., 33(9), L09812, doi:10.1029/2006GL025976.
  • Huff Hartz, K. E. H., T. Rosenorn, S. R. Ferchak, T. M. Raymond, M. Bilde, N. M. Donahue, and S. N. Pandis (2005), Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol, J. Geophys. Res., 110(D14), D14208, doi:10.1029/2004JD005754.
  • Huff Hartz, K., J. E. Tischuk, M. N. Chan, C. K. Chan, N. M. Donahue, and S. N. Pandis (2006), Cloud condensation nuclei activation of limited solubility organic aerosol, Atmos. Environ., 40(4), 605617.
  • Kalberer, M., et al. (2004), Identification of polymers as major components of atmospheric organic aerosols, Science, 303(5664), 16591662.
  • Kavouras, I. G., N. Mihalopoulos, and E. G. Stephanou (1998), Formation of atmospheric particles organic acids produced by forests, Nature, 395, 683686.
  • Kleindienst, T. E., T. S. Conver, C. D. McIver, and E. O. Edney (2004), Determination of secondary organic aerosol products from the photooxidation of toluene and their implications in ambient PM2.5, J. Atmos. Chem., 47(1), 79100.
  • Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, A. J. Prenni, C. M. Carrico, B. Ervens, and G. Feingold (2006), Water activity and activation diameters from hygroscopicity data—Part II: Application to organic species, Atmos. Chem. Phys., 6, 795809.
  • Kreidenweis, S. M., K. Koehler, P. J. DeMott, A. J. Prenni, C. Carrico, and B. Ervens (2005), Water activity and activation diameters from hygroscopicity data—Part I: Theory and application to inorganic salts, Atmos. Chem. Phys., 5, 13571370.
  • Kreidenweis, S. M., M. D. Petters, and P. J. DeMott (2006), Deliquescence-controlled activation of organic aerosols, Geophys. Res. Lett., 33(6), L06801, doi:10.1029/2005GL024863.
  • Kumar, P. P., K. Broekhuizen, and J. P. D. Abbatt (2003), Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species, Atmos. Chem. Phys., 3, 509520.
  • Lim, Y. B., and P. J. Ziemann (2005), Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx, Environ. Sci. Technol., 39(23), 92299236.
  • O’Dowd, C. D., P. Aalto, K. Hameri, M. Kulmala, and T. Hoffmann (2002), Aerosol formation—Atmospheric particles from organic vapours, Nature, 416(6880), 497498.
  • Odum, J. R., T. P. W. Jungkamp, R. J. Griffin, R. C. Flagan, and J. H. Seinfeld (1997), The atmospheric aerosol-forming potential of whole gasoline vapor, Science, 276(5309), 9699.
  • Petters, M. D., and S. M. Kreidenweis (2006), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys. Discuss., 6, 84358456.
  • Petters, M. D., S. M. Kreidenweis, J. R. Snider, K. A. Koehler, Q. Wang, A. J. Prenni, and P. J. DeMott (2006a), Cloud droplet activation of polymerized organic aerosols, Tellus, 58B, 196205.
  • Petters, M. D., A. J. Prenni, S. M. Kreidenweis, and P. J. DeMott (2006b), On measuring the critical diameter of cloud condensation nuclei using mobility selected aerosol, Aerosol Sci. Technol., in press.
  • Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. M. Russell (2006c), Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer, J. Geophys. Res., 111(D2), D02206, doi:10.1029/2004JD005694.
  • Petters, M. D., A. J. Prenni, S. M. Kreidenweis, P. J. DeMott, A. Matsunaga, Y. B. Lim, and P. J. Ziemann (2006d), Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol, Geophys. Res. Lett., 33(24), L24806, doi:10.1029/2006GL027249.
  • Platnick, S., and S. Twomey (1994), Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high-resolution radiometer, J. Appl. Meteorol., 33(3), 334347.
  • Pöschl, U. (2005), Atmospheric aerosols: Composition, transformation, climate and health effects, Angew. Chem., Int. Ed., 44(46), 75207540.
  • Prausnitz, J. M., R. N. Lichtenthaler, and E. G. Azevedo (1999), Molecular Thermodynamics of Fluid-Phase Equilibria,, Prentice-Hall,, Upper Saddle River, NJ.
  • Prenni, A. J., P. J. DeMott, S. M. Kreidenweis, D. E. Sherman, L. M. Russell, and Y. Ming (2001), The effects of low molecular weight dicarboxylic acids on cloud formation, J. Phys. Chem. A, 105, 11,24011,248.
  • Raymond, T. M., and S. N. Pandis (2002), Cloud activation of single-component organic aerosol particles, J. Geophys. Res., 107(D24), 4787, doi:10.1029/2002JD002159.
  • Roberts, G. C., and A. Nenes (2005), A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol Sci. Technol., 39(3), 206221.
  • Saathoff, H., K. H. Naumann, M. Schnaiter, W. Schock, O. Mohler, U. Schurath, E. Weingartner, M. Gysel, and U. Baltensperger (2003), Coating of soot and (NH4)(2)SO4 particles by ozonolysis products of alpha-pinene, J. Aerosol Sci., 34(10), 12971321.
  • Saxena, P., and L. M. Hildemann (1996), Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57109.
  • Seinfeld, J. H., and J. F. Pankow (2003), Organic atmospheric particulate material, Annu. Rev. Phys. Chem., 54, 121140.
  • Shulman, M. L., M. C. Jacobson, R. J. Carlson, R. E. Synovec, and T. E. Young (1996), Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophys. Res. Lett., 23, 277280.
  • Sorjamaa, R., B. Svenningsson, T. Raatikainen, S. Henning, M. Bilde, and A. Laaksonen (2004), The role of surfactants in Kohler theory reconsidered, Atmos. Chem. Phys., 4, 21072117.
  • Tang, I. N., and H. R. Munkelwitz (1994), Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance, J. Geophys. Res., 99(D9), 18,80118,808.
  • Taylor, W. D., T. D. Allston, M. J. Moscato, G. B. Fazekas, R. Kozlowski, and G. A. Takacs (1980), Atmospheric photo-dissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate, Int. J. Chem. Kinet., 12(4), 231240.
  • Tolocka, M. P., M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens, and M. V. Johnston (2004), Formation of oligomers in secondary organic aerosol, Environ. Sci. Technol., 38(5), 14281434.
  • Tunved, P., H. C. Hansson, V. M. Kerminen, J. Strom, M. Dal Maso, H. Lihavainen, Y. Viisanen, P. P. Aalto, M. Komppula, and M. Kulmala (2006), High natural aerosol loading over boreal forests, Science, 312(5771), 261263.
  • Twomey, S. (1974), Pollution and planetary albedo, Atmos. Environ., 8(12), 12511256.
  • Twohy, C. H., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet (2005), Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact, J. Geophys. Res., 110(D8), D08203, doi:10.1029/2004JD005116.
  • VanReken, T. M., N. L. Ng, R. C. Flagan, and J. H. Seinfeld (2005), Cloud condensation nucleus activation properties of biogenic secondary organic aerosol, J. Geophys. Res., 110(D7), D07206, doi:10.1029/2004JD005465.
  • Varutbangkul, V., F. J. Brechtel, R. Bahreini, N. L. Ng, M. D. Keywood, J. H. Kroll, R. C. Flagan, J. H. Seinfeld, A. Lee, and A. H. Goldstein (2006), Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys., 6, 23672388.
  • Virkkula, A., R. V. Dingenen, F. Raes, and J. Hjorth (1999), Hygroscopic properties of aerosol formed by oxidation of limonene, α-pinene, and β-pinene, J. Geophys. Res., 104, 35693579.
  • Volkamer, R., J. L. Jimenez, F. San Martini, K. Dzepina, Q. Zhang, D. Salacedo, L. T. Molina, D. R. Worsnop, and M. J. Molina (2006), Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected, Geophys. Res. Lett., 33, L17811, doi:10.1029/2006GL026899.
  • White, W. (1990), Contributions to Light Scattering,, in Visibility: Existing and Historical Conditions: Causes and Effects,, pp. 24-8524-102, Acidic Deposition State Science Report 24, Section 4, National Acid Precipitation Assessment Program,, Washington DC.
  • Wolf, B. A. (2003), Chain connectivity and conformational variability of polymers: Clues to an adequate thermodynamic description of their solutions, 2—Composition dependence of flory-huggins interaction parameters, Macromol. Chem. Phys., 204(11), 13811390.
  • Yu, J. Z., D. R. Cocker, R. J. Griffin, R. C. Flagan, and J. H. Seinfeld (1999a), Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products, J. Atmos. Chem., 34(2), 207258.
  • Yu, J. Z., R. J. Griffin, D. R. Cocker, R. C. Flagan, J. H. Seinfeld, and P. Blanchard (1999b), Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres, Geophys. Res. Lett., 26(8), 11451148.
  • Zhou, J. C., E. Swietlicki, H. C. Hansson, and P. Artaxo (2002), Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season, J. Geophys. Res., 107(D20), 8055, doi:10.1029/2000JD000203.