SEARCH

SEARCH BY CITATION

References

  • Alan, D. Z., S. Justin, P. M. Edwin, N. Bart, F. W. Eric, and P. L. Dennis (2003), Detection of intensification in global- and continental-scale hydrological cycles: Temporal scale of evaluation, J. Clim., 16, 535547, doi:10.1175/1520-0442.
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrig. Drain. Pap. 56, Food and Agric. Organ., Rome.
  • Arnell, N., and C.-Z. Liu (2001), Hydrology and water resources, in Climate Change 2001: Impacts, Adaptation, and Vulnerability—Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. J. McCarthy et al., pp. 197198, Cambridge Univ. Press, New York.
  • Batjes, N. H. (2002a), Revised soil parameter estimates for the soil types of the world, Soil Use Manage., 18, 232235, doi:10.1079/SUM2002125.
  • Batjes, N. H. (2002b), Soil parameter estimates for the soil types of the world for use in global and regional modeling (Version 2.1; July 2002), ISRIC Report 2002/02c, Int. Food Policy Res. Inst. and Int. Soil Ref. and Inf. Cent., Wageningen, Netherlands. (Available on-line at http://www.isric.org).
  • Bouchet, R. J. (1963), Evapotranspiration réelle et potentielle, signification climatique, in Proceedings of the Symposium on Surface Waters, IAHS Publ. 62, pp. 134142, IAHS Press, Wallingford, U. K.
  • Brutsaert, W., and M. B. Parlange (1998), Hydrologic cycle explains the evaporation paradox, Nature, 396, 30, doi:10.1038/23845.
  • Chattopadhyay, N., and M. Hulme (1997), Evaporation and potential evapotranspiration in India under conditions of recent and future climate change, Agric. For. Meteorol., 87, 5573.
  • Chen, D., G. Gao, C.-Y. Xu, J. Guo, and G.-Y. Ren (2005), Comparison of the Thornthwaite method and pan data with the standard Penman-Monteith estimates of reference evapotranspiration in China, Clim. Res., 28, 123132.
  • Domrös, M., and G.-B. Peng (1988), The Climate of China, pp. 202208, Springer, New York.
  • Gao, G., D. Chen, G.-Y. Ren, Y. Chen, and Y.-M. Liao (2006), Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000, J. Geogr. Sci., 16(1), 312.
  • Global Soil Data Task Group (2000), Global Gridded Surfaces of Selected Soil Characteristics, Oak Ridge Natl. Lab., Distributed Active Archive Cent., Oak Ridge, Tenn. (Available at http://daacsti.ornl.gov/SOILS/guides/igbp-surfaces.html.).
  • Golubev, V. S., J. H. Lawrimore, P. Y. Groisman, N. A. Speranskaya, S. A. Zhuravin, M. J. Menne, T. C. Peterson, and R. W. Malone (2001), Evaporation changes over the contiguous United States and the former USSR: A reassessment, Geophys. Res. Lett., 28, 26652668.
  • Gong, L., C.-Y. Xu, D. Chen, and S. Halldin (2006), Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin, J. Hydrol., 329, 620629, doi:10.1016/j.jhydrol.2006.03.027.
  • Huntington, T. G. (2006), Evidence for intensification of the global water cycle: Review and synthesis, J. Hydrol., 319, 8395, doi:10.1016/j.jhydrol.2005.07.003.
  • Kendall, M. G. (1975), Rank Correlation Methods, Griffin, London.
  • Lawrimore, J. H., and T. C. Peterson (2000), Pan evaporation in dry and humid regions of the United States, J. Hydrometeorol., 1, 543546, doi:10.1175/1525-7541.
  • Li, C.-H., and Z.-F. Yang (2004), Natural runoff changes in the Yellow River basin (in Chinese with English abstract), J. Geogr. Sci., 14(4), 427436.
  • Linacre, E. T. (2004), Evaporation trends, Theor. Appl. Climatol., 79, 1121, doi:10.1007/s00704-004-0059-2.
  • Liu, B.-H., M. Xu, H. Mark, and W.-G. Gong (2004a), A spatial analysis of pan evaporation trends in China, 1955–2000, J. Geophys. Res., 109, D15102, doi:10.1029/2004JD004511.
  • Liu, B.-H., M. Xu, H. Mark, Y. Qi, and Y.-Q. Li (2004b), Taking China's temperature: Daily range, warming trends, and regional variations, 1955–2000, J. Clim., 17, 44534462.
  • Liu, C.-Z., Z.-Y. Liu, and Z.-H. Xie (2004), Study of trends in runoff for the Haihe River basin in recent 50 years (in Chinese with English abstract), J. Appl. Meteorol. Sci., 15(4), 385393.
  • Ma, Z.-G. (2005), Historical regular patterns of the discharge in the Yellow River and the cause of their formation (in Chinese with English abstract), Chin. J. Geophys., 48(6), 12701275.
  • Mann, H. B. (1945), Non-parametric tests against trend, Econometrica, 13, 245259.
  • Mather, J. R. (1974), Climatology: Fundamentals and Applications, pp. 135156, McGraw-Hill, New York.
  • Milly, P. C. D., and K. A. Dunne (2001), Trends in evaporation and surface cooling in the Mississippi River basin, Geophys. Res. Lett., 28, 12191222.
  • Mitchell, J. M., B. Dzerdzeevskii, H. Flohn, W. L. Hofmeyr, H. H. Lamb, K. N. Rao, and C. C. Wallén (1966), Climate change, WMO Tech. Note 79, 79 pp., World Meteorol. Org., Geneva.
  • Ohmura, A., and M. Wild (2002), Is the hydrological cycle accelerating? Science, 298, 13451346.
  • Peterson, T. C., V. S. Golubev, and P. Y. Groisman (1995), Evaporation losing its strength, Nature, 377, 687688.
  • Qin, N.-X., T. Jiang, and C.-Y. Xu (2005), Trends and abruption analysis on the discharge in the Yangtze basin (in Chinese with English abstract), Resour. Environ. Yangtze Basin, 14(5), 589594.
  • Rana, G., and N. Katerji (2000), Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review, Eur. J. Agron., 13, 125153.
  • Ren, G.-Y., and J. Guo (2006), Change in pan evaporation and the influential factors over China: 1956–2000 (in Chinese with English abstract), J. Nat. Resour., 21(1), 3144.
  • Roderick, M. L., and G. D. Farquhar (2002), The cause of decreased pan evaporation over the past 50 years, Science, 298, 14101411.
  • Roderick, M. L., and G. D. Farquhar (2004), Changes in Australian pan evaporation from 1970 to 2002, Int. J. Climatol., 24, 10771090, doi:10.1002/joc.1061.
  • Serrano, A., V. L. Mateos, and J. A. García (1999), Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995, Phys. Chem. Earth, Part B, 24, 8590.
  • Tempel, P., N. H. Batjes, and V. W. P. van Engelen (1996), IGBP-DIS soil data set for pedo transfer function development, Working Paper and Preprint 96/05, Int. Soil Ref. and Inf. Cent. (ISRIC), Wageningen, Netherlands.
  • Thomas, A. (2000), Spatial and temporal characteristics of potential evapotranspiration trends over China, Int. J. Climatol., 20, 381396.
  • Thornthwaite, C. W., and J. R. Mather (1955), The water balance, Publ. Climatol., 8(1), 1104.
  • Wang, Z.-Y., Y.-H. Ding, and J.-H. He (2004), An updating analysis of the climate change in China in recent 50 years (in Chinese with English abstract), Acta Meteorol. Sinica, 62(2), 228236.
  • Xu, C.-Y., and D. Chen (2005), Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany, Hydrol. Processes, 19, 37173734, doi:10.1002/hyp.5853.
  • Xu, C.-Y., and V. P. Singh (2005), Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions, J. Hydrol., 308, 105121, doi:10.1016/j.jhydrol.2004.10.024.
  • Xu, C.-Y., L.-B. Gong, T. Jiang, and D. Chen (2006a), Decreasing reference evapotranspiration in a warming climate: A case of Changjiang (Yangtze River) catchment during 1970–2000, Adv. Atmos. Sci., 23, 513520.
  • Xu, C.-Y., L.-B. Gong, T. Jiang, D. Chen, and V. P. Singh (2006b), Analysis of spatial distribution and temporal trend of reference evapotranspiration in Changjiang catchments, J. Hydrol., 327, 8193.
  • Yue, S., and P. Pilon (2004), A comparison of the power of the t test, Mann-Kendall and bootstrap for trend detection, Hydrol. Sci. J., 49(1), 2137.
  • Zhai, P.-M., X.-B. Zhang, H. Wan, and X.-H. Pan (2005), Trends in total precipitation and frequency of daily precipitation extremes over China, J. Clim., 18, 10961108.
  • Zhan, C.-S., J. Xia, Z.-L. Li, and C.-W. Niu (2005), Modelling the spatial distribution of actual terrestrial evapotranspiration using a hydrological and meteorological approach, in Regional Hydrological Impacts of Climatic Change: Hydroclimatic Variability,IAHS Publ. 296, edited by S. Frank et al., pp. 283290, Int. Assoc. Hydrol. Sci., Gentbrugge, Belgium.
  • Zhang, S., E. Simelton, L. Lövdahl, and D. Chen (2007), Simulated long-term effects of different soil management regimes on the water balance in the Loess Plateau, China, Field Crops Res., 100(2–3), 311319.