SEARCH

SEARCH BY CITATION

References

  • Andreadis, K., and D. Lettenmaier (2006), Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872886.
  • Arora, V., and G. Boer (2005), A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, Global Change Biol., 11, 3959, doi:10.1111/j.1365–2486.2004.00890.x.
  • Bindschadler, R., H. Choi, C. Shuman, and T. Markus (2005), Detecting and measuring new snow accumulation on ice sheets by satellite remote sensing, Remote Sens. Environ., 98, 388402.
  • Burgers, G., P. van Leeuwen, and G. Evensen (1998), Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 17191724.
  • Chang, A., J. Foster, and D. Hall (1987), Nimbus-7 SMMR derived global snow cover parameters, Ann. Glaciol., 9, 3944.
  • Clark, M., and A. Slater (2006), Probabilistic quantitative precipitation estimation in complex terrain, J. Hydrometeorol., 7, 322.
  • Cline, D. (2006), Advancing snow observation and modeling through the NASA Cold Land Processes Experiment (CLPX), Eos Trans. AGU, 87(36), Jt. Assem. Suppl., Abstract H21B-03.
  • Cline, D., R. Armstrong, R. Davis, K. Elder, and G. Liston (2002), CLPX-Ground: ISA Snow Pit Measurements, http://nsidc.org/data/nsidc-0176.html, Natl. Snow and Ice Data Cent., Boulder, Colo.
  • Dingman, S. (1981), Elevation: A major influence on the hydrology of New Hampshire and Vermont, USA, Hydrol. Sci. Bull., 26, 399413.
  • Dong, J., J. P. Walker, P. R. Houser, and C. Sun (2007), Scanning multichannel microwave radiometer snow water equivalent assimilation, J. Geophys. Res., 112, D07108, doi:10.1029/2006JD007209.
  • Dozier, J. (1989), Spectral signature of alpine snow cover from the Landsat thematic mapper, Remote Sens. Environ., 28, 922.
  • Durand, M., and S. Margulis (2006), Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent, J. Hydrometeorol., 7, 443457.
  • Evensen, G. (2003), The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dyn., 53, 343367.
  • Fassnacht, S. R., K. A. Dressler, and R. C. Bales (2003), Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data, Water Resour. Res., 39(8), 1208, doi:10.1029/2002WR001512.
  • Fily, M., B. Bourdelles, J. Dedieu, and C. Sergent (1997), Comparison of in situ and Landsat thematic mapper derived snow grain characteristics in the alps, Remote Sens. Environ., 59, 452460.
  • Flanner, M., and C. Zender (2006), Linking snowpack microphysics and albedo evolution, J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834.
  • Foster, J., C. Sun, J. Walker, R. Kelly, A. Chang, J. Dong, and H. Powell (2005), Quantifying the uncertainty in passive microwave snow water equivalent observations, Remote Sens. Environ., 94, 187203.
  • Gaspari, G., and S. Cohn (1999), Construction of correlation functions in two and three dimensions, Q. J. R. Meteorol. Soc., 125, 723757.
  • Goïta, K., A. Walker, and B. Goodison (2003), Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data, Int. J. Remote Sens., 24, 10971102.
  • Goodison, B., H. Ferguson, and G. McKay (1981), Measurement and data analysis, in Handbook of Snow: Principles, Processes, Management and Use, edited by D. M. Gray, and D. H. Male, pp. 191274, Pergamon Can., Willowdale, Ont.
  • Goodison, B., et al. (1999), Cryospheric systems, in EOS Science Plan, chap. 6, pp. 261307, NASA/Goddard Space Flight Cent., Greenbelt, Md.
  • Groisman, P., and D. Legates (1994), The accuracy of United States precipitation data, Bull. Am. Meteorol. Soc., 75, 215227.
  • Hall, D., G. Riggs, and V. Salomonson (1995), Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data, Remote Sens. Environ., 54, 127140.
  • Hallikainen, M., and P. Jolma (1992), Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland, IEEE Trans. Geosci. Remote Sens., 30, 124131.
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce (2000), Improved United States precipitation quality control system and analysis, NCEP Clim. Predict. Cent. Atlas 7, Clim. Predict. Cent., Camp Springs, Md.
  • Hood, E., M. Williams, and D. Cline (1999), Sublimation from a seasonal snowpack at a continental, mid-latitude alpine site, Hydrol. Processes, 13, 17811797.
  • Houtekamer, P., and H. Mitchell (2001), A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 123137.
  • Isaaks, E., and R. Srivastava (1989), Applied Geostatistics, Oxford Univ. Press, New York.
  • Jordan, R. (1991), A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89, Spec. Rep. 91–16, Cold Reg. Res. and Eng. Lab., Hanover, N. H.
  • Kay, J., A. Gillespie, G. Hansen, and E. Pettit (2003), Spatial relationships between snow contaminant content, grain size, and surface temperature from multispectral images of Mount Rainier, Washington (USA), Remote Sens. Environ., 86, 216231.
  • Kelly, R., A. Chang, L. Tsang, and J. Foster (2003), A prototype AMSR-E global snow area and snow depth algorithm, IEEE Trans. Geosci. Remote Sens., 41, 230242.
  • Klein, A., and J. Stroeve (2002), Development and validation of a snow albedo algorithm for the MODIS instrument, Ann. Glaciol., 34, 4552.
  • Legagneux, L., A. Taillandier, and F. Domine (2004), Grain growth theories and the isothermal evolution of the specific surface area of snow, J. Appl. Phys., 95, 61756184.
  • Marks, D., T. Link, M. Reba, R. Essery, L. Hardy, J. Pomeroy, and J. Sicart (2006), Sub-canopy radiant energy during snowmelt in uniform and non-uniform forests spanning the North American cordillera, Eos Trans. AGU, 87(36), Jt. Assem. Suppl., Abstract A33D-07.
  • Mätzler, C. (2000), Relief effects for passive microwave remote sensing, Int. J. Remote Sens., 21, 24032412.
  • Mätzler, C. (2003), Remote sensing data assimilation for improved observations of the cryosphere: Seasonal snowcover observed with microwave radiometry, paper presented at the WCRP-CliC Meeting, World Clim. Res. Programme Clim. and Cryosphere, Victoria, B. C., Canada.
  • Mätzler, C., and A. Wiesmann (1999), Extension of the microwave emission model of layered snowpacks to coarse-grained snow, Remote Sens. Environ., 70, 317325.
  • Mitchell, K. E., et al. (2004), The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system, J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.
  • Mote, P., A. Hamlet, M. Clark, and D. Lettenmaier (2005), Declining mountain snowpack in western North America, Bull. Am. Meteorol. Soc., 86(1), 3949.
  • Mote, T., A. Grundstein, D. Leathers, and D. Robinson (2003), A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains, Water Resour. Res., 39(8), 1209, doi:10.1029/2002WR001782.
  • Nolin, A., and J. Dozier (2000), A hyper-spectral method for remotely sensing the grain size of snow, Remote Sens. Environ., 74, 207216.
  • Painter, T., J. Dozier, D. Roberts, R. Davis, and R. Green (2003), Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data, Remote Sens. Environ., 85, 6477.
  • Pan, M., et al. (2003), Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent, J. Geophys. Res., 108(D22), 8850, doi:10.1029/2003JD003994.
  • Powell, D., J. Faulkner, D. Darr, Z. Zhu, and D. MacCleery (1993), Forest resources of the United States, 1992, Tech. Rep. RM-234, 132 pp., Rocky Mt. For. and Range Exp. Stn., U.S. Dep. of Agric., Fort Collins, Colo.
  • Pulliainen, J. (2006), Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations, Remote Sens. Environ., 101, 257269.
  • Pulliainen, J., J. Grandell, and M. Hallikainen (1999), HUT snow emission model and its applicability to snow water equivalent retrieval, IEEE Trans. Geosci. Remote Sens., 37, 13781390.
  • Reich, P., M. Walters, D. Ellsworth, J. Vose, J. Volin, C. Gresham, and W. Bowman (1998), Relationships of leaf dark respiration to leaf nitrogen, specic leaf area and leaf life-span: A test across biomes and functional groups, Oecologia, 114, 471482.
  • Reichle, R., and R. Koster (2003), Assessing the impact of horizontal error correlations in background fields on soil moisture estimation, J. Hydrometeorol., 6, 12291242.
  • Skofronick-Jackson, G., M. Kim, J. Weinman, and D. Chang (2004), A physical model to determine snowfall over land by microwave radiometry, IEEE Trans. Geosci. Remote Sens., 42, 10471058.
  • Slater, A., and M. Clark (2006), Snow data assimilation via an ensemble Kalman filter, J. Hydrometeorol., 7, 478493.
  • Sloan, W., C. Kilsby, and R. Lunn (2004), Incorporating topographic variability into a simple regional snowmelt model, Hydrol. Processes, 18, 33713390.
  • Stamnes, K., S. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 25022509.
  • Sun, C., J. Walker, and P. Houser (2004), A methodology for snow data assimilation in a land surface model, J. Geophys. Res., 109, D08108, doi:10.1029/2003JD003765.
  • Sun, S., J. Jin, and Y. Xue (1999), A simple snow-atmosphere-soil transfer model, J. Geophys. Res., 104, 19,58719,597.
  • Surdyk, S. (2002), Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: An analytical approach, Remote Sens. Environ., 80, 256271.
  • Tait, A. (1998), Estimation of snow water equivalent using passive microwave radiation data, Remote Sens. Environ., 64, 286291.
  • Tedesco, M., E. Kim, D. Cline, T. Graf, T. Koike, R. Armstrong, M. Brodzik, and J. Hardy (2006), Comparison of local scale measured and modelled brightness temperatures and snow parameters from the CLPX 2003 by means of a dense medium radiative transfer theory model, Hydrol. Processes, 20, 657672.
  • Tigerstedt, K., and J. Pulliainen (1998), Retrieval of geophysical parameters with integrated modeling of land surfaces and atmosphere, final report, ESTEC contract 11706/95/NL/NB (SC), 14 pp., Eur. Space Res. and Technol. Cent., Noordwijk, Netherlands.
  • Ulaby, F., R. Moore, and A. Fung (1981), Microwave Remote Sensing, Active and Passive, vol. I, 456 pp., Addison-Wesley, Boston, Mass.
  • Warren, S. (1984), Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 23, 12061225.
  • Wegmüller, U., C. Mätzler, and E. Njoku (1995), Canopy opacity models, in Passive Microwave Remote Sensing of Land-Atmosphere Interactions: ESA/NASA International Workshop, edited by B. Choudhury et al., pp. 375387, VSP, Leiden, Netherlands.
  • Wiesmann, A., and C. Mätzler (1999), Microwave emission model of layered snowpacks, Remote Sens. Environ., 70, 307316.
  • Wiscombe, W., and S. Warren (1980), A model for the spectral albedo of snow. I: Pure snow, J. Atmos. Sci., 37, 27122733.
  • Xue, Y., P. Sellers, J. Kinter, and J. Shukla (1991), A simplified biosphere model for global climate studies, J. Clim., 4, 345364.
  • Xue, Y., S. Sun, D. Kahan, and Y. Jiao (2003), Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold regions sites, J. Geophys. Res., 108(D22), 8859, doi:10.1029/2002JD003174.
  • Zhu, Z. (1994), Forest density mapping in the lower 48 States: A regression procedure, Res. Pap. SO-280, 11 pp., South. For. Exp. Stn., For. Serv., U.S. Dep. of Agric., New Orleans, La.