Journal of Geophysical Research: Atmospheres

Seasonal variations of atmospheric C2–C7 nonmethane hydrocarbons in Tokyo



[1] Eighteen C2–C7 NMHCs (nonmethane hydrocarbons) were measured hourly during the Integrated Measurement Program for Aerosol and Oxidant Chemistry in Tokyo (IMPACT) measurement campaigns conducted in central Tokyo during four different periods (summer/autumn of 2003 and winter/summer of 2004). The ambient atmospheric concentrations of NMHCs showed an inverse correlation with wind speed and mixing height and were significantly affected by mesoscale weather conditions. The mixing ratio of isoprene tightly correlated with solar flux and temperature in summer, as it was dominantly emitted by the local vegetation. All the observed NMHCs except isoprene showed high correlation with each other in winter (r2 > 0.5), suggesting concurrent accumulation under stagnant condition and common sources. Emission ratios were calculated on the basis of the correlation with carbon monoxide and ethyne. Compared to the typical winter NMHC composition, during summer there was a significant increase (up to 7 times higher than wintertime) of C4–C5 alkanes from fuel evaporation; of C2–C3 alkenes, n-hexane and benzene from chemical industry; and of toluene from local manufacturers, reflecting the temperature dependence of these evaporative emissions. In addition to the online measurements in Tokyo, canister sampling at a suburban site (Kisai) followed by multidimensional GC analyses was conducted during the summer campaign in 2004. The atmospheric concentrations of longer-lived compounds (≥ several days) at Kisai showed the buildup under sea breeze circulation. The average ambient concentration of toluene was 2 times higher than that in central Tokyo, likely because of substantial emissions from local industries as reported in the prefectural statistics.