SEARCH

SEARCH BY CITATION

References

  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann (2001), Intraseasonal air-sea interactions at the onset of El Niño, J. Clim., 14, 17021719.
  • Bessafi, M., and M. C. Wheeler (2005), Modulation of south Indian Ocean tropical cyclones by the Madden-Julian Oscillation and convectively-coupled equatorial waves, Mon. Weather Rev., 134, 638656.
  • Bladé, I., and D. L. Hartmann (1993), Tropical intraseasonal oscillations in a simple nonlinear model, J. Atmos. Sci., 50, 29222939.
  • Bonan, G. B. (1998), A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide, NCAR/TN-417+STR, 150 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.
  • Bony, S., and K. A. Emanuel (2005), On the role of moist processes in tropical intraseasonal variability: Cloud-radiation and moisture-convection feedbacks, J. Atmos. Sci., 62, 27702789.
  • Bretherton, C. S., and A. H. Sobel (2002), A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation, J. Clim., 15, 29072920.
  • Chang, C. P., and H. Lim (1988), Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations, J. Atmos. Sci., 45, 17091720.
  • Cho, H.-R., and D. Pendlebury (1997), Wave CISK of equatorial waves and the vertical distribution of cumulus heating, J. Atmos. Sci., 54, 24292440.
  • Emanuel, K. A. (1987), An air-sea interaction model of intraseasonal oscillation in the tropics, J. Atmos. Sci., 44, 23242340.
  • Hartmann, D. L., L. A. Moy, and Q. Fu (2001), Tropical convection and the energy balance at the top of the atmosphere, J. Clim., 14, 44954511.
  • Hayashi, Y., and D. G. Golder (1986), Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. part I: Phase propagation, J. Atmos. Sci., 43, 30583067.
  • Hayashi, Y., and D. G. Golder (1988), Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. part II: Structure, J. Atmos. Sci., 45, 30173033.
  • Hayashi, Y., and D. G. Golder (1997), United mechanisms for the generation of low- and high-frequency tropical waves. part I: Control experiments with moist convective adjustment, J. Atmos. Sci., 54, 12621276.
  • Hayashi, Y., and A. Sumi (1986), The 30–40 day oscillation simulated in an “aqua planet” model, J. Meteorol. Soc. Jpn., 64, 451466.
  • Hendon, H. H., C. Zhang, and J. D. Glick (1999), Interannual variation of the MJO during austral summer, J. Clim., 12, 25382550.
  • Holtslag, A. A. M., and B. A. Boville (1993), Local versus non-local boundary layer diffusion in a global climate model, J. Clim., 6, 18251842.
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, S. Curtis, R. Joyce, B. McGavock, and J. Susskind (2001), Global precipitation at one-degree daily resolution from multi-satellite observations, J. Hydrometeorol., 2, 3650.
  • Janowiak, J. E., and P. A. Arkin (1991), Rainfall variations in the tropics during 1986–1989, as estimated from observations of cloud-top temperatures, J. Geophys. Res., 96, 33593373.
  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann (1995), Forcing of intraseasonal Kelvin waves in the equatorial Pacific, J. Geophys. Res., 100, 10,61310,631.
  • Lau, K. M., and L. Peng (1987), Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere, J. Atmos. Sci., 44, 950972.
  • Lau, K. M., H. T. Wu, Y. C. Sud, and G. K. Walker (2005), Effects of cloud microphysics on tropical atmospheric hydrologic processes and intraseasonal variability, J. Clim., 18, 47314751.
  • Lau, N. C., I. M. Held, and J. D. Neelin (1988), The Madden-Julian Oscillations in an idealized general circulation model, J. Atmos. Sci., 45, 38103831.
  • Lee, M.-I., I.-S. Kang, J.-K. Kim, and B. E. Mapes (2001), Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model, J. Geophys. Res., 106, 14,21914,233.
  • Lee, M.-I., I.-S. Kang, and B. E. Mapes (2003), Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability, J. Meteorol. Soc. Jpn., 81, 963992.
  • Le Treut, H., and Z.-X. Li (1991), Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties, Clim. Dyn., 5, 175187.
  • Liebmann, B., H. H. Hendon, and J. D. Glick (1994), The relationship between tropical cyclones of the western Pacifc and Indian Oceans and the Madden-Julian Oscillation, J. Meteorol. Soc. Jpn., 72, 401411.
  • Lin, J. L., and B. E. Mapes (2004), Radiation budget of the tropical intraseasonal oscillation, J. Atmos. Sci., 61, 20502062.
  • Lin, J. L., M. H. Zhang, and B. E. Mapes (2002), Does the tropical atmosphere support large-scale radiative-convective overturning? paper presented at the 25th Conference on Hurricanes and Tropical Meteorology, abstract 15B.2a, pp. 589590, Am. Meteorol. Soc., San Diego, Calif.
  • Lin, J. L., B. E. Mapes, M. H. Zhang, and M. Newman (2004), Stratiform precipitation, vertical heating profiles, and the Madden-Julian Oscillation, J. Atmos. Sci., 61, 296309.
  • Lin, J. L., et al. (2006), Tropical intraseasonal variability in 14 IPCC AR4 climate models. part I: Convective signals, J. Clim., 19, 26652690.
  • Lin, J. L., M.-I. Lee, D. Kim, I.-S. Kang, and D. Frierson (2007), The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves, J. Clim., in press.
  • Madden, R. A., and P. R. Julian (1971), Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific, J. Atmos. Sci., 28, 702708.
  • Majda, A. J., and R. Klein (2003), Systematic multiscale models for the tropics, J. Atmos. Sci., 60, 393408.
  • Maloney, E. D., and D. L. Hartmann (2001), The Madden-Julian Oscillation, barotropic dynamics, and north Pacific tropical cyclone formation. part I: Observations, J. Atmos. Sci., 58, 25452558.
  • Mapes, B. E., S. Tulich, J. L. Lin, and P. Zuidema (2006), Mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329.
  • Matsuno, T. (1966), Quasi-geostrophic motions in the equatorial area, J. Meteorol. Soc. Jpn., 44, 2543.
  • Nakajima, T., M. Tsukamoto, Y. Tsushima, and A. Numaguti (1995), Modelling of the radiative processes in an AGCM, in Climate System Dynamics and Modelling, vol. 1–3, edited by T. Matsuno, pp. 104123, Univ. of Tokyo, Tokyo.
  • Neelin, J. D., I. M. Held, and K. H. Cook (1987), Evaporation-wind feedback and low-frequency variability in the tropical atmosphere, J. Atmos. Sci., 44, 23412348.
  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi (1995), Development of an atmospheric general circulation model, in Climate System Dynamics and Modelling, vol. 1–3, edited by T. Matsuno, pp. 127, Univ. of Tokyo, Tokyo.
  • Qian, T. (2003), Cloud vertical structure and radiative heating profiles during TOGA COARE, Ph.D. thesis, 141 pp., State Univ. of New York at Stony Brook, Stony Brook, N. Y.
  • Raymond, D. J. (2001), A new model of the Madden–Julian Oscillation, J. Atmos. Sci, 58, 28072819.
  • Roundy, P. E., and G. N. Kiladis (2006), Observed relationships between intraseasonal oceanic Kelvin waves and atmospheric forcing, J. Clim., 19, 52535272.
  • Salby, M., and R. R. Garcia (1987), Transient response to localized episodic heating in the tropics. part I: Excitation and short-time near-field behavior, J. Atmos. Sci., 44, 458498.
  • Salby, M. L., and H. H. Hendon (1994), Intraseasonal behavior of clouds, temperature, and motion in the tropics, J. Atmos. Sci., 51, 22072224.
  • Slingo, J. M., and R. A. Madden (1991), Characteristics of the tropical intraseasonal oscillation in the NCAR community climate model, Q. J. R. Meteorol. Soc., 117, 11291169.
  • Slingo, J. M., et al. (1996), Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject, Clim. Dyn., 12, 325357.
  • Sobel, A. H., and C. S. Bretherton (2000), Modeling tropical precipitation in a single column, J. Clim., 13, 43784392.
  • Sobel, A. H., and H. Gildor (2003), A simple time-dependent model of SST hot spots, J. Clim., 16, 39783992.
  • Takayabu, Y. N. (1994), Large-scale cloud disturbances associated with equatorial waves. part I: Spectral features of the cloud disturbances, J. Meteorol. Soc. Jpn., 72, 433448.
  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa (1999), Abrupt termination of the 1997–98 El Niño in response to a Madden-Julian Oscillation, Nature, 402, 279282.
  • Tiedtke, M. (1983), The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model, in Proceedings of the ECMWF Workshop on Convection in Large-Scale Models, pp. 297316, Eur. Cent. for Medium-Range Weather Forecasts, Reading, England, 28 November to 1 December.
  • Waliser, D., S. Schubert, A. Kumar, K. Weickmann, and R. Dole (2003), Proceedings from a workshop on Modeling, Simulation and Forecasting of Subseasonal Variability, NASA/CP 2003-104606, vol. 25, pp. 62, Natl. Aeronaut. and Space Admin., Greenbelt, Md.
  • Wang, B., and H. Rui (1990), Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial β-plane, J. Atmos. Sci., 47, 398413.
  • Wheeler, M., and G. N. Kiladis (1999), Convectively coupled Equatorial waves: Analysis of clouds and temperature in the wave number-frequency domain, J. Atmos. Sci., 56, 374399.
  • Wheeler, M., G. N. Kiladis, and P. J. Webster (2000), Large-scale dynamical fields associated with convectively coupled equatorial waves, J. Atmos. Sci., 57, 613640.
  • Wheeler, M. C., and J. L. McBride (2005), Australian-Indonesian monsoon, in Intraseasonal Variability in the Atmosphere-Ocean Climate System, edited by W. K. M. Lau, and D. E. Waliser, pp. 125173, Springer, New York.
  • Yasunari, T. (1979), Cloudiness fluctuations associated with the northern hemisphere summer monsoon, J. Meteorol. Soc. Jpn., 57, 227242.
  • Yuter, S. E., and R. A. Houze Jr. (2000), The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. part I: ITCZ Region, Bull. Am. Meteorol. Soc., 81, 451481.