SEARCH

SEARCH BY CITATION

References

  • Amiro, B. D., J. B. Todd, B. M. Wotton, K. A. Logan, M. D. Flannigan, B. J. Stocks, J. A. Mason, D. L. Martell, and K. G. Hirsch (2001), Direct carbon emissions from Canadian forest fires, 1959–1999, Can. J. For. Res., 31, 512525.
  • Amiro, B. D., K. A. Logan, B. M. Wotton, M. D. Flannigan, J. B. Todd, B. J. Stocks, and D. L. Martell (2004), Fire weather index system components for large fires in the Canadian boreal forest, Int. J. Widland Fire, 13, 391400.
  • Anderson, J. L., and the GFDL Global Atmospheric Model Development Team (2004), The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations, J. Clim., 17(24), 46414673.
  • Arora, V. K., and G. J. Boer (2005), Fire as an interactive component of dynamic vegetation models, J. Geophys. Res., 110, G02008, doi:10.1029/2005JG000042.
  • Boschetti, L., H. D. Eva, P. A. Brivio, and J. M. Grégoire (2004), Lessons to be learned from the comparison of three satellite-derived biomass burning products, Geophys. Res. Lett., 31, L21501, doi:10.1029/2004GL021229.
  • Cahoon, D. R.Jr., B. J. Stocks, M. E. Alexander, B. A. Baum, and J. G. Goldammer (2000), Wildland fire detection from space: Theory and application, in Biomass Burning and Its Inter-relationship With the Climate System, edited by J. L. Innes, M. Beniston, and M. M. Verstraete, pp. 151169, Kluwer Acad., Dordrecht, Netherlands.
  • Cardoso, M. F., G. C. Hurtt, B. Moore, C. A. Nobre, and E. M. Prins (2003), Projecting future fire activity in Amazonia, Global Change Biol., 9, 656669.
  • Conard, S. G., A. I. Sukhinin, B. J. Stocks, D. R. Cahoon Jr., E. P. Davidenko, and G. A. Ivanova (2002), Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia, Clim. Change, 55(1–2), 197211.
  • Flannigan, M. D., and J. B. Harrington (1988), A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80), J. Appl. Meteorol., 27, 441452.
  • Fraser, R. H., Z. Li, and J. Cihlar (2000), Hotspot and NDVI Differencing Synergy (HANDS): A new technique for burned area mapping over boreal forest, Remote Sens. Environ., 74(3), 362376.
  • French, N. H. F., P. Goovaerts, and E. S. Kasischke (2004), Uncertainty in estimating carbon emissions from boreal forest fires, J. Geophys. Res., 109, D14S08, doi:10.1029/2003JD003635.
  • Giorgi, F. (2006), Climate change hot-spots, Geophys. Res. Lett., 33, L08707, doi:10.1029/2006GL025734.
  • Goldammer, J. G., and B. J. Stocks (2000), Eurasian perspective of fire: Dimension, management, policies, and scientific requirements, in Fire, Climate Change, and Carbon Cycling in the North American Boreal Forest, edited by E. S. Kasischke, and B. J. Stocks, pp. 4965, Springer, New York.
  • Gorham, E. (1991), Northern peatlands: Role in the carbon cycle and probable responses to climate warming, Ecol. Appl., 1, 182195.
  • Groisman, P. Y., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. M. Lawrimore (2004), Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in-situ observations, J. Hydrometeorol., 5, 6485.
  • Hao, W.-M., M.-H. Liu, and P. J. Crutzen (1990), Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975–1980, in Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, edited by J. G. Goldammer, pp. 400462, Springer, New York.
  • Hearn, P.Jr., T. Hare, P. Schruben, D. Sherrill, C. LaMar, and P. Tsushima (2002), Global GIS—Global Coverage DVD, 1st ed., Am. Geol. Inst., Alexandria, Va.
  • Ichoku, C., Y. J. Kaufman, L. Giglio, Z. Li, R. H. Fraser, J. Z. Jin, and W. M. Park (2003), Comparative analysis of daytime fire detection algorithms using AVHRR data for the 1995 fire season in Canada: Perspective for MODIS, Int. J. Remote Sens., 24, 16691690.
  • Intergovernmental Panel on Climate Change (2000), Land Use, Land-Use Change, and Forestry. Special Report of the Intergovernmental Panel on Climate Change, edited by R. T. Watson, et al., Cambridge Univ. Press, Cambridge, U. K.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001: The Scientific Basis, edited by J. T. Houghton, et al., Cambridge Univ. Press, New York.
  • Johnson, E. A. (1992), Fire and Vegetation Dynamics—Studies From the North American Boreal Forest, 129 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Justice, C. O., L. Giglio, S. Korontzi, J. Owens, J. T. Morisette, D. P. Roy, J. Descloitres, S. Alleaume, F. Petitcolin, and Y. Kaufman (2002), The MODIS fire products, Remote Sens. Environ., 83, 244262.
  • Kajii, Y., et al. (2002), Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data, J. Geophys. Res., 107(D24), 4745, doi:10.1029/2001JD001078.
  • Kasischke, E. S., D. Williams, and D. Barry (2002), Analysis of the patterns of large fires in the boreal forest region of Alaska, Int. J. Wildland Fire, 11, 131144.
  • Korovin, G. N. (1996), Analysis of the distribution of forest fires in Russia, in Fire in Ecosystems of Boreal Eurasia, edited by J. G. Goldammer, and V. V. Furyaev, pp. 112128, Kluwer Acad., Dordrecht, Netherlands.
  • Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice (2005), A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.
  • Laurance, W. F., M. A. Cochrane, S. Bergen, P. M. Fearnside, P. Delamonica, C. Barber, S. D'Angelo, and T. Fernandes (2001), The future of the Brazilian Amazon, Science, 291, 438439.
  • McGuire, A. D., J. Walsh, F. S. Chapin III, and C. Wirth (2006), Integrated regional changes in Arctic climate feedbacks: Implications for the global climate system, Annu. Rev. Environ. Resour., 31, 6191.
  • Metropolis, N., et al. (1953), Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 10871092.
  • Milly, P. C. D., and A. B. Shmakin (2002), Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model, J. Hydrometeorol., 3(3), 283299.
  • Mollicone, D., H. D. Eva, and F. Achard (2006), Ecology: Human role in Russian wild fire, Nature, 440, 436437.
  • Mouillot, F., and C. B. Field (2005), Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century, Global Change Biol., 11, 398420.
  • Mouillot, F., A. Narasimha, Y. Balkanski, J.-F. Lamarque, and C. B. Field (2006), Global carbon emissions from biomass burning in the 20th century, Geophys. Res. Lett., 33, L01801, doi:10.1029/2005GL024707.
  • Nalder, I. A., and R. W. Wein (1999), Long-term forest floor carbon dynamics after fire in upland boreal forests of western Canada, Global Biogeochem. Cycles, 13, 951968.
  • Nijssen, B., R. Schnur, and D. P. Lettenmaier (2001), Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93, J. Clim., 14, 17901808.
  • Nikolov, N., and H. Helmisaari (1992), Silvics of the circumpolar boreal forest tree species, in A Systems Analysis of the Global Boreal Forest, edited by H. H. Shugart, R. Leemans, and G. B. Bonan, pp. 1384, Cambridge Univ. Press, New York.
  • Pereira, J. M., B. S. Pereira, P. Barbosa, D. Stroppiana, M. J. P. Vasconcelos, and J.-M. Grégoire (1999), Satellite monitoring of fire in the EXPRESSO study area during the 1996 dry season experiment: Active fires, burnt area, and atmospheric emissions, J. Geophys. Res., 104(D23), 30,70130,712.
  • Price, C., and D. Rind (1994), The impact of a 2 × CO2 climate on lightning-caused fires, J. Clim., 7(10), 14841494.
  • Randerson, J. T., G. R. van der Werf, G. J. Collatz, L. Giglio, C. J. Still, P. Kasibhatla, J. B. Miller, J. W. C. White, R. S. DeFries, and E. S. Kasischke (2005), Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2, Global Biogeochem. Cycles, 19, GB2019, doi:10.1029/2004GB002366.
  • Schulze, E.-D., C. Wirth, D. Mollicone, and W. Ziegler (2005), Succession after stand replacing disturbances by fire, windthrow and insects in the dark taiga of central Siberia, Oecologia, 146, 7788.
  • Seiler, W., and P. J. Crutzen (1980), Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Clim. Change, 2, 207247.
  • Shvidenko, A., and J. G. Goldammer (2001), Fire situation in Russia, Int. For. Fire News, 24, 4159.
  • Shvidenko, A. Z., and S. Nilsson (2000), Fire and the carbon budget of Russian forests, in Fire, Climate Change, and Carbon Cycling in the Boreal Forest, edited by E. S. Kasischke, and B. J. Stocks, pp. 289311, Springer, New York.
  • Simon, M., S. Plummer, F. Fierens, J. J. Hoelzemann, and O. Arino (2004), Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification, J. Geophys. Res., 109, D14S02, doi:10.1029/2003JD003622.
  • Soja, A. J., A. I. Sukhinin, D. R. Cahoon Jr., H. H. Shugart, and P. W. Stackhouse Jr. (2004a), AVHRR-derived fire frequency, distribution and area burned in Siberia, Int. J. Remote Sens., 25(10), 19391960.
  • Soja, A. J., W. R. Cofer, H. H. Shugart, A. I. Sukhinin, P. W. Stackhouse Jr., D. J. McRae, and S. G. Conard (2004b), Estimating fire emissions and disparities in boreal Siberia (1998–2002), J. Geophys. Res., 109, D14S06, doi:10.1029/2004JD004570.
  • Stocks, B. J. (1991), The extent and impact of forest fires in northern circumpolar countries, in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, edited by J. S. Levine, pp. 197202, MIT Press, Cambridge, Mass.
  • Stocks, B. J., et al. (1998), Climate change and forest fire potential in Russian and Canadian boreal forests, Clim. Change, 38(1), 113.
  • Stocks, B. J., et al. (2002), Large forest fires in Canada, 1959–1997, J. Geophys. Res., 107, 8149, doi:10.1029/2001JD000484 [printed 108(D1), 2003].
  • Sukhinin, A. I., et al. (2004), AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies, Remote Sens. Environ., 93, 546564.
  • Tansey, K., et al. (2004), Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data, J. Geophys. Res., 109, D14S03, doi:10.1029/2003JD003598.
  • Thonicke, K., S. Venevsky, S. Sitch, and W. Cramer (2001), The role of fire disturbance for global vegetation dynamics: Coupling fire into a dynamic global vegetation model, Global Ecol. Biogeogr., 10(6), 661677.
  • van der Werf, G. R., J. T. Randerson, G. J. Collatz, and L. Giglio (2003), Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biol., 9, 547562.
  • van der Werf, G. R., J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla, A. F. Arellano, S. C. Olsen, and E. S. Kasischke (2004), Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period, Science, 303, 7376.
  • Venevsky, S., K. Thonicke, S. Sitch, and W. Cramer (2002), Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study, Global Change Biol., 8(10), 984998.
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam (2006), Warming and earlier spring increases western U.S. forest wildfire activity, Science, 313(5789), 940943.
  • Williams, E. R. (2004), Lightning and climate: A review, Atmos. Res., 76, 272287.
  • Wirth, C. (2005), Fire regime and tree diversity in boreal forests: Implications for the carbon cycle, in Forest Diversity and Function: Temperate and Boreal Systems, Ecol. Stud., vol. 176, edited by M. Scherer-Lorenzen, C. Körner, and E.-D. Schulze, pp. 309344, Springer, Berlin.
  • Wirth, C., C. I. Czimczik, and E.-D. Schulze (2002), Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests, Tellus, Ser. B, 54, 611630.
  • Xie, P., and P. A. Arkin (1996), Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Am. Meteorol. Soc., 78, 25392558.
  • Zimov, S. A., S. P. Davidov, G. M. Zimova, A. I. Davidova, F. S. Chapin, M. C. Chapin, and J. F. Reynolds (1999), Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2, Science, 284, 19731976.