Analysis of glacial earthquakes



[1] In 2003, Ekström et al. reported on the detection of a new class of earthquakes that occur in glaciated regions, with the vast majority being in Greenland. The events have a characteristic radiation pattern and lack the high-frequency content typical of tectonic earthquakes. It was proposed that the events correspond to large and sudden sliding motion of glaciers. Here we present an analysis of all 184 such events detected in Greenland between 1993 and 2005. Fitting the teleseismic long-period surface waves to a landslide model of the source, we obtain improved locations, timing, force amplitudes, and force directions. After relocation, the events cluster into seven regions, all of which correspond to regions of very high ice flow and most of which are named outlet glaciers. These regions are Daugaard Jensen Glacier, Kangerdlugssuaq Glacier, Helheim Glacier, the southeast Greenland glaciers, the northwest Greenland glaciers, Rinks Isbrae, and Jakobshavn Isbrae. Event amplitudes range from 0.1 to 2.0 × 1014 kg m. Force directions are consistent with sliding in the direction of glacial flow over a period of about 50 s. Each region has a different temporal distribution of events. All glaciers are more productive in the summer, but have their peak activity in different months. Over the study period, Kangerdlugssuaq has had a constant number of events each year, whereas Jakobshavn had most events in 1998–1999, and the number of events in Helheim and the northwest Greenland glaciers has increased substantially between 1993 and 2005. The size distribution of events in Kangerdlugssuaq is peaked above the detection threshold, suggesting that glacial earthquakes have a characteristic size.